Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes.

Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes. The armchair carbon nanotube is an ideal system to study fundamental physics in one-dimensional metals and potentially a superb material for applications such as electrical power transmission. Synthesis and purification efforts to date have failed to produce a homogeneous population of such a material. Here we report evolutionary strategies to find DNA sequences for the recognition and subsequent purification of (6,6) and (7,7) armchair species from synthetic mixtures. The new sequences were derived by single-point scanning mutation and sequence motif variation of previously identified ones for semiconducting tubes. Optical absorption spectroscopy of the purified armchair tubes revealed well-resolved first- and second-order electronic transitions accompanied by prominent sideband features that have neither been predicted nor observed previously. Resonance Raman spectroscopy showed a single Lorentzian peak for the in-plane carbon-carbon stretching mode (G band) of the armchair tubes, repudiating the common practice of using such a line shape to infer the absence of metallic species. Our work demonstrates the exquisite sensitivity of DNA to nanotube metallicity and makes the long-anticipated pure armchair tubes available as seeds for their mass amplification. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the American Chemical Society Pubmed

Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes.

Journal of the American Chemical Society , Volume 133 (33): 4 – Feb 22, 2012

Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes.


Abstract

The armchair carbon nanotube is an ideal system to study fundamental physics in one-dimensional metals and potentially a superb material for applications such as electrical power transmission. Synthesis and purification efforts to date have failed to produce a homogeneous population of such a material. Here we report evolutionary strategies to find DNA sequences for the recognition and subsequent purification of (6,6) and (7,7) armchair species from synthetic mixtures. The new sequences were derived by single-point scanning mutation and sequence motif variation of previously identified ones for semiconducting tubes. Optical absorption spectroscopy of the purified armchair tubes revealed well-resolved first- and second-order electronic transitions accompanied by prominent sideband features that have neither been predicted nor observed previously. Resonance Raman spectroscopy showed a single Lorentzian peak for the in-plane carbon-carbon stretching mode (G band) of the armchair tubes, repudiating the common practice of using such a line shape to infer the absence of metallic species. Our work demonstrates the exquisite sensitivity of DNA to nanotube metallicity and makes the long-anticipated pure armchair tubes available as seeds for their mass amplification.

Loading next page...
 
/lp/pubmed/evolution-of-dna-sequences-toward-recognition-of-metallic-armchair-fO2624CAiO

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0002-7863
eISSN
1520-5126
DOI
10.1021/ja205407q
pmid
21777006

Abstract

The armchair carbon nanotube is an ideal system to study fundamental physics in one-dimensional metals and potentially a superb material for applications such as electrical power transmission. Synthesis and purification efforts to date have failed to produce a homogeneous population of such a material. Here we report evolutionary strategies to find DNA sequences for the recognition and subsequent purification of (6,6) and (7,7) armchair species from synthetic mixtures. The new sequences were derived by single-point scanning mutation and sequence motif variation of previously identified ones for semiconducting tubes. Optical absorption spectroscopy of the purified armchair tubes revealed well-resolved first- and second-order electronic transitions accompanied by prominent sideband features that have neither been predicted nor observed previously. Resonance Raman spectroscopy showed a single Lorentzian peak for the in-plane carbon-carbon stretching mode (G band) of the armchair tubes, repudiating the common practice of using such a line shape to infer the absence of metallic species. Our work demonstrates the exquisite sensitivity of DNA to nanotube metallicity and makes the long-anticipated pure armchair tubes available as seeds for their mass amplification.

Journal

Journal of the American Chemical SocietyPubmed

Published: Feb 22, 2012

There are no references for this article.