Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Essential roles of iron superoxide dismutase in photoautotrophic growth of Synechocystis sp. PCC 6803 and heterogeneous expression of marine Synechococcus sp. CC9311 copper/zinc superoxide dismutase within its sodB knockdown mutant.

Essential roles of iron superoxide dismutase in photoautotrophic growth of Synechocystis sp. PCC... Synechocystis sp. PCC 6803 possesses only one sod gene, sodB, encoding iron superoxide dismutase (FeSOD). It could not be knocked out completely by direct insertion of the kanamycin resistance cassette. When the promoter of sodB in WT Synechocystis was replaced with the copper-regulated promoter PpetE, a completely segregated PpetE-sodB strain could be obtained. When this strain was cultured in copper-starved BG11 medium, the chlorophyll a content was greatly reduced, growth was seriously inhibited and the strain was nearly dead during the 8 days of growth, whilst the WT strain grew well under the same growth conditions. These results indicated that sodB was essential for photoautotrophic growth of Synechocystis. The reduction of sodB gene copies in the Synechocystis genome rendered the cells more sensitive to oxidative stress produced by methyl viologen and norflurazon. sodB still could not be knocked out completely after active expression of sodC (encoding Cu/ZnSOD) from Synechococcus sp. CC9311 in the neutral site slr0168 under the control of the psbAII promoter, which means the function of FeSOD could not be complemented completely by Cu/ZnSOD. Heterogeneously expressed sodC increased the oxidation and photoinhibition tolerance of the Synechocystis sodB knockdown mutant. Membrane fractionation followed by immunoblotting revealed that FeSOD was localized in the cytoplasm, and Cu/ZnSOD was localized in the soluble and thylakoid membrane fractions of the transformed Synechocystis. Cu/ZnSOD has a predicted N-terminal signal peptide, so it is probably a lumen protein. The different subcellular localization of these two SODs may have resulted in the failure of substitution of sodC for sodB. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microbiology (Reading, England) Pubmed

Essential roles of iron superoxide dismutase in photoautotrophic growth of Synechocystis sp. PCC 6803 and heterogeneous expression of marine Synechococcus sp. CC9311 copper/zinc superoxide dismutase within its sodB knockdown mutant.

Microbiology (Reading, England) , Volume 160 (Pt 1): 14 – Aug 26, 2014

Essential roles of iron superoxide dismutase in photoautotrophic growth of Synechocystis sp. PCC 6803 and heterogeneous expression of marine Synechococcus sp. CC9311 copper/zinc superoxide dismutase within its sodB knockdown mutant.


Abstract

Synechocystis sp. PCC 6803 possesses only one sod gene, sodB, encoding iron superoxide dismutase (FeSOD). It could not be knocked out completely by direct insertion of the kanamycin resistance cassette. When the promoter of sodB in WT Synechocystis was replaced with the copper-regulated promoter PpetE, a completely segregated PpetE-sodB strain could be obtained. When this strain was cultured in copper-starved BG11 medium, the chlorophyll a content was greatly reduced, growth was seriously inhibited and the strain was nearly dead during the 8 days of growth, whilst the WT strain grew well under the same growth conditions. These results indicated that sodB was essential for photoautotrophic growth of Synechocystis. The reduction of sodB gene copies in the Synechocystis genome rendered the cells more sensitive to oxidative stress produced by methyl viologen and norflurazon. sodB still could not be knocked out completely after active expression of sodC (encoding Cu/ZnSOD) from Synechococcus sp. CC9311 in the neutral site slr0168 under the control of the psbAII promoter, which means the function of FeSOD could not be complemented completely by Cu/ZnSOD. Heterogeneously expressed sodC increased the oxidation and photoinhibition tolerance of the Synechocystis sodB knockdown mutant. Membrane fractionation followed by immunoblotting revealed that FeSOD was localized in the cytoplasm, and Cu/ZnSOD was localized in the soluble and thylakoid membrane fractions of the transformed Synechocystis. Cu/ZnSOD has a predicted N-terminal signal peptide, so it is probably a lumen protein. The different subcellular localization of these two SODs may have resulted in the failure of substitution of sodC for sodB.

Loading next page...
 
/lp/pubmed/essential-roles-of-iron-superoxide-dismutase-in-photoautotrophic-BvoKEiMX0d

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1350-0872
eISSN
1465-2080
DOI
10.1099/mic.0.073080-0
pmid
24196426

Abstract

Synechocystis sp. PCC 6803 possesses only one sod gene, sodB, encoding iron superoxide dismutase (FeSOD). It could not be knocked out completely by direct insertion of the kanamycin resistance cassette. When the promoter of sodB in WT Synechocystis was replaced with the copper-regulated promoter PpetE, a completely segregated PpetE-sodB strain could be obtained. When this strain was cultured in copper-starved BG11 medium, the chlorophyll a content was greatly reduced, growth was seriously inhibited and the strain was nearly dead during the 8 days of growth, whilst the WT strain grew well under the same growth conditions. These results indicated that sodB was essential for photoautotrophic growth of Synechocystis. The reduction of sodB gene copies in the Synechocystis genome rendered the cells more sensitive to oxidative stress produced by methyl viologen and norflurazon. sodB still could not be knocked out completely after active expression of sodC (encoding Cu/ZnSOD) from Synechococcus sp. CC9311 in the neutral site slr0168 under the control of the psbAII promoter, which means the function of FeSOD could not be complemented completely by Cu/ZnSOD. Heterogeneously expressed sodC increased the oxidation and photoinhibition tolerance of the Synechocystis sodB knockdown mutant. Membrane fractionation followed by immunoblotting revealed that FeSOD was localized in the cytoplasm, and Cu/ZnSOD was localized in the soluble and thylakoid membrane fractions of the transformed Synechocystis. Cu/ZnSOD has a predicted N-terminal signal peptide, so it is probably a lumen protein. The different subcellular localization of these two SODs may have resulted in the failure of substitution of sodC for sodB.

Journal

Microbiology (Reading, England)Pubmed

Published: Aug 26, 2014

There are no references for this article.