Enhancement of antioxidant activity of well-dispersed core-shell structured CeO2 coating Au nanorods under visible light irradiation.

Enhancement of antioxidant activity of well-dispersed core-shell structured CeO2 coating Au... Gold nanoparticle (AuNP) modification shows great advantages in improving the antioxidant activity of nanoCeO2. However, the improved effect of AuNP modification becomes smaller and even results in the decrease of antioxidant ability due to severe aggregation with increasing nanomaterial concentration. Additionally, the effects of photo-properties of AuNPs on the antioxidant activity of nanoCeO2 have not been studied. In response to these problems, core-shell-shaped Au@CeO2 was synthesized which took Au nanorods (AuNRs) as carriers and had a layer of CeO2 NP coating. The antioxidant activity of Au@CeO2 was evaluated by the UV-vis method in the methyl violet-Fenton system. Results showed that AuNRs could improve the antioxidant activity of nanoCeO2 due to the increase in the amount of Ce3+ on the surface of nanoCeO2, and the enhancing effect remained across the whole experimental concentration range due to the good dispersibility of AuNRs. Additionally, a further increase in the antioxidant ability of Au@CeO2 was found with 5 min visible light irradiation, and continuous irradiation during a 25 min time reaction, which resulted in more obvious enhanced antioxidant ability. This phenomenon was attributed to the localized surface plasmon resonance of AuNRs triggered by photons which induced charge transfer from AuNRs to nanoCeO2, thus making the cyclic transformation between Ce3+ and Ce4+ easier. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nanotechnology Pubmed

Enhancement of antioxidant activity of well-dispersed core-shell structured CeO2 coating Au nanorods under visible light irradiation.

Nanotechnology, Volume 31 (23): 1 – Mar 23, 2020

Abstract

Gold nanoparticle (AuNP) modification shows great advantages in improving the antioxidant activity of nanoCeO2. However, the improved effect of AuNP modification becomes smaller and even results in the decrease of antioxidant ability due to severe aggregation with increasing nanomaterial concentration. Additionally, the effects of photo-properties of AuNPs on the antioxidant activity of nanoCeO2 have not been studied. In response to these problems, core-shell-shaped Au@CeO2 was synthesized which took Au nanorods (AuNRs) as carriers and had a layer of CeO2 NP coating. The antioxidant activity of Au@CeO2 was evaluated by the UV-vis method in the methyl violet-Fenton system. Results showed that AuNRs could improve the antioxidant activity of nanoCeO2 due to the increase in the amount of Ce3+ on the surface of nanoCeO2, and the enhancing effect remained across the whole experimental concentration range due to the good dispersibility of AuNRs. Additionally, a further increase in the antioxidant ability of Au@CeO2 was found with 5 min visible light irradiation, and continuous irradiation during a 25 min time reaction, which resulted in more obvious enhanced antioxidant ability. This phenomenon was attributed to the localized surface plasmon resonance of AuNRs triggered by photons which induced charge transfer from AuNRs to nanoCeO2, thus making the cyclic transformation between Ce3+ and Ce4+ easier.

Loading next page...
 
/lp/pubmed/enhancement-of-antioxidant-activity-of-well-dispersed-core-shell-d2TCBRrDQa
DOI
10.1088/1361-6528/ab764b
pmid
32053800

Abstract

Gold nanoparticle (AuNP) modification shows great advantages in improving the antioxidant activity of nanoCeO2. However, the improved effect of AuNP modification becomes smaller and even results in the decrease of antioxidant ability due to severe aggregation with increasing nanomaterial concentration. Additionally, the effects of photo-properties of AuNPs on the antioxidant activity of nanoCeO2 have not been studied. In response to these problems, core-shell-shaped Au@CeO2 was synthesized which took Au nanorods (AuNRs) as carriers and had a layer of CeO2 NP coating. The antioxidant activity of Au@CeO2 was evaluated by the UV-vis method in the methyl violet-Fenton system. Results showed that AuNRs could improve the antioxidant activity of nanoCeO2 due to the increase in the amount of Ce3+ on the surface of nanoCeO2, and the enhancing effect remained across the whole experimental concentration range due to the good dispersibility of AuNRs. Additionally, a further increase in the antioxidant ability of Au@CeO2 was found with 5 min visible light irradiation, and continuous irradiation during a 25 min time reaction, which resulted in more obvious enhanced antioxidant ability. This phenomenon was attributed to the localized surface plasmon resonance of AuNRs triggered by photons which induced charge transfer from AuNRs to nanoCeO2, thus making the cyclic transformation between Ce3+ and Ce4+ easier.

Journal

NanotechnologyPubmed

Published: Mar 23, 2020

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off