Effect of electrical stimulation combined with diet therapy on insulin resistance via mTOR signaling.

Effect of electrical stimulation combined with diet therapy on insulin resistance via mTOR... Insulin resistance (IR) is the impaired insulin response that causes decreased glucose tolerance. Electrical stimulation (ES) can improve insulin sensitivity in the skeletal muscle. However, the underlying molecular mechanisms remain to be elucidated. In the present study, the effect of ES and diet therapy on IR and the role of the mammalian target of rapamycin (mTOR) pathway in the improvement of IR by ES were investigated. A total of 70 Sprague‑Dawley male rats were divided into five groups: Normal (n=10), IR control (n=15), diet (n=15), ES (n=15) and ES + diet (n=15) groups. An IR rat model was established by high‑fat and high‑carbohydrate diet for 5 weeks and confirmed by measurement of fasting plasma glucose (FPG), insulin, insulin sensitivity index (ISI) and IR index. ES on the Zusanli (ST36), Sanyinjiao (SP 6) and Weiwanxiashu (EX‑B3) acupoints and the low‑fat and low‑carbohydrate diet demonstrated protective effects. The body weight, concentrations of FPG, insulin, triglycerides (TG), free fatty acids (FFA) and total cholesterol (TC) of the rats were detected. Pathologic changes in the liver and pancreatic tissues were assessed. Western blotting and immunohistochemistry were performed to determine the role of PI3K/Akt/mTOR signaling. Results demonstrated that ES and diet therapy significantly increased ISI and reduced FPG, IR index, FFA, TG, TC and weight. Inflammatory cell infiltration in the liver and pancreatic tissues was ameliorated and lipid droplets and cavitation in hepatocyte were decreased after ES and diet therapy. The administration of ES and diet therapy also enhanced glucose transport by the upregulation of glucose transporter 4 and accelerated glycogen synthesis through the suppression of glycogen synthase kinase 3α/β via PI3K/Akt/mTOR signaling. Hence, the present results demonstrated that ES combined with diet therapy improved IR through PI3K/Akt/mTOR signaling. The proposed therapy was superior to the method of diet alone. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular medicine reports Pubmed

Effect of electrical stimulation combined with diet therapy on insulin resistance via mTOR signaling.

Molecular medicine reports, Volume 20 (6): 11 – Nov 22, 2019
Preview Only

Effect of electrical stimulation combined with diet therapy on insulin resistance via mTOR signaling.

Molecular medicine reports, Volume 20 (6): 11 – Nov 22, 2019

Abstract

Insulin resistance (IR) is the impaired insulin response that causes decreased glucose tolerance. Electrical stimulation (ES) can improve insulin sensitivity in the skeletal muscle. However, the underlying molecular mechanisms remain to be elucidated. In the present study, the effect of ES and diet therapy on IR and the role of the mammalian target of rapamycin (mTOR) pathway in the improvement of IR by ES were investigated. A total of 70 Sprague‑Dawley male rats were divided into five groups: Normal (n=10), IR control (n=15), diet (n=15), ES (n=15) and ES + diet (n=15) groups. An IR rat model was established by high‑fat and high‑carbohydrate diet for 5 weeks and confirmed by measurement of fasting plasma glucose (FPG), insulin, insulin sensitivity index (ISI) and IR index. ES on the Zusanli (ST36), Sanyinjiao (SP 6) and Weiwanxiashu (EX‑B3) acupoints and the low‑fat and low‑carbohydrate diet demonstrated protective effects. The body weight, concentrations of FPG, insulin, triglycerides (TG), free fatty acids (FFA) and total cholesterol (TC) of the rats were detected. Pathologic changes in the liver and pancreatic tissues were assessed. Western blotting and immunohistochemistry were performed to determine the role of PI3K/Akt/mTOR signaling. Results demonstrated that ES and diet therapy significantly increased ISI and reduced FPG, IR index, FFA, TG, TC and weight. Inflammatory cell infiltration in the liver and pancreatic tissues was ameliorated and lipid droplets and cavitation in hepatocyte were decreased after ES and diet therapy. The administration of ES and diet therapy also enhanced glucose transport by the upregulation of glucose transporter 4 and accelerated glycogen synthesis through the suppression of glycogen synthase kinase 3α/β via PI3K/Akt/mTOR signaling. Hence, the present results demonstrated that ES combined with diet therapy improved IR through PI3K/Akt/mTOR signaling. The proposed therapy was superior to the method of diet alone.
Loading next page...
 
/lp/pubmed/effect-of-electrical-stimulation-combined-with-diet-therapy-on-insulin-ZQdhiewffl
DOI
10.3892/mmr.2019.10783

Abstract

Insulin resistance (IR) is the impaired insulin response that causes decreased glucose tolerance. Electrical stimulation (ES) can improve insulin sensitivity in the skeletal muscle. However, the underlying molecular mechanisms remain to be elucidated. In the present study, the effect of ES and diet therapy on IR and the role of the mammalian target of rapamycin (mTOR) pathway in the improvement of IR by ES were investigated. A total of 70 Sprague‑Dawley male rats were divided into five groups: Normal (n=10), IR control (n=15), diet (n=15), ES (n=15) and ES + diet (n=15) groups. An IR rat model was established by high‑fat and high‑carbohydrate diet for 5 weeks and confirmed by measurement of fasting plasma glucose (FPG), insulin, insulin sensitivity index (ISI) and IR index. ES on the Zusanli (ST36), Sanyinjiao (SP 6) and Weiwanxiashu (EX‑B3) acupoints and the low‑fat and low‑carbohydrate diet demonstrated protective effects. The body weight, concentrations of FPG, insulin, triglycerides (TG), free fatty acids (FFA) and total cholesterol (TC) of the rats were detected. Pathologic changes in the liver and pancreatic tissues were assessed. Western blotting and immunohistochemistry were performed to determine the role of PI3K/Akt/mTOR signaling. Results demonstrated that ES and diet therapy significantly increased ISI and reduced FPG, IR index, FFA, TG, TC and weight. Inflammatory cell infiltration in the liver and pancreatic tissues was ameliorated and lipid droplets and cavitation in hepatocyte were decreased after ES and diet therapy. The administration of ES and diet therapy also enhanced glucose transport by the upregulation of glucose transporter 4 and accelerated glycogen synthesis through the suppression of glycogen synthase kinase 3α/β via PI3K/Akt/mTOR signaling. Hence, the present results demonstrated that ES combined with diet therapy improved IR through PI3K/Akt/mTOR signaling. The proposed therapy was superior to the method of diet alone.

Journal

Molecular medicine reportsPubmed

Published: Nov 22, 2019

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off