Effect of Al species of polyaluminum chlorides on floc breakage and re-growth process: Dynamic evolution of floc properties, dissolved organic matter and dissolved Al.

Effect of Al species of polyaluminum chlorides on floc breakage and re-growth process: Dynamic... Influence of floc breakage and re-growth on the release of natural dissolved organic matter (DOM) and dissolved Al was explored. Results indicated that Al species including monomeric species (Ala), medium polymer species (Alb), and colloidal or solid species (Alc) in polyaluminum chlorides (PACls) played significant role. At lower doses ranged from 5 to 20 mg/L, floc breakage damaged Ala-NOM bonds for AlCl3, causing obvious release of DOM and dissolved Al. After re-growth, dissolved Al mainly connected with broken flocs, rather than released DOM. Thus, after re-growth, DOM release was still remarkable, but additional removal of dissolved Al was observed. At higher doses above 20 mg/L, more Ala transformed to Alb and Alc. Due to the enmeshment effect induced by Alc coagulation, fewer DOM and dissolved Al were released after breakage, and additional removal of DOM and dissolved Al were attained after re-growth. For PAClAl13 which mainly contained Alb, at optimal dose, floc breakage generated the most severe release of DOM and dissolved Al, while the result after re-growth was just reverse. This was ascribed to stronger charge neutralization ability of Alb. Furthermore, the influence of floc breakage and re-growth on DOM and dissolved Al for PAClC was similar to that for AlCl3. The reason was fully analyzed in this research. This study may give further indication regarding reaction mechanisms of floc breakage and re-growth for PACls. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chemosphere Pubmed

Effect of Al species of polyaluminum chlorides on floc breakage and re-growth process: Dynamic evolution of floc properties, dissolved organic matter and dissolved Al.

Chemosphere, Volume 249: 1 – May 1, 2020
Preview Only

Effect of Al species of polyaluminum chlorides on floc breakage and re-growth process: Dynamic evolution of floc properties, dissolved organic matter and dissolved Al.

Chemosphere, Volume 249: 1 – May 1, 2020

Abstract

Influence of floc breakage and re-growth on the release of natural dissolved organic matter (DOM) and dissolved Al was explored. Results indicated that Al species including monomeric species (Ala), medium polymer species (Alb), and colloidal or solid species (Alc) in polyaluminum chlorides (PACls) played significant role. At lower doses ranged from 5 to 20 mg/L, floc breakage damaged Ala-NOM bonds for AlCl3, causing obvious release of DOM and dissolved Al. After re-growth, dissolved Al mainly connected with broken flocs, rather than released DOM. Thus, after re-growth, DOM release was still remarkable, but additional removal of dissolved Al was observed. At higher doses above 20 mg/L, more Ala transformed to Alb and Alc. Due to the enmeshment effect induced by Alc coagulation, fewer DOM and dissolved Al were released after breakage, and additional removal of DOM and dissolved Al were attained after re-growth. For PAClAl13 which mainly contained Alb, at optimal dose, floc breakage generated the most severe release of DOM and dissolved Al, while the result after re-growth was just reverse. This was ascribed to stronger charge neutralization ability of Alb. Furthermore, the influence of floc breakage and re-growth on DOM and dissolved Al for PAClC was similar to that for AlCl3. The reason was fully analyzed in this research. This study may give further indication regarding reaction mechanisms of floc breakage and re-growth for PACls.
Loading next page...
 
/lp/pubmed/effect-of-al-species-of-polyaluminum-chlorides-on-floc-breakage-and-re-90MdEHAACj
DOI
10.1016/j.chemosphere.2020.126449
pmid
32208217

Abstract

Influence of floc breakage and re-growth on the release of natural dissolved organic matter (DOM) and dissolved Al was explored. Results indicated that Al species including monomeric species (Ala), medium polymer species (Alb), and colloidal or solid species (Alc) in polyaluminum chlorides (PACls) played significant role. At lower doses ranged from 5 to 20 mg/L, floc breakage damaged Ala-NOM bonds for AlCl3, causing obvious release of DOM and dissolved Al. After re-growth, dissolved Al mainly connected with broken flocs, rather than released DOM. Thus, after re-growth, DOM release was still remarkable, but additional removal of dissolved Al was observed. At higher doses above 20 mg/L, more Ala transformed to Alb and Alc. Due to the enmeshment effect induced by Alc coagulation, fewer DOM and dissolved Al were released after breakage, and additional removal of DOM and dissolved Al were attained after re-growth. For PAClAl13 which mainly contained Alb, at optimal dose, floc breakage generated the most severe release of DOM and dissolved Al, while the result after re-growth was just reverse. This was ascribed to stronger charge neutralization ability of Alb. Furthermore, the influence of floc breakage and re-growth on DOM and dissolved Al for PAClC was similar to that for AlCl3. The reason was fully analyzed in this research. This study may give further indication regarding reaction mechanisms of floc breakage and re-growth for PACls.

Journal

ChemospherePubmed

Published: May 1, 2020

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off