Dynamic treatment regimens in small n, sequential, multiple assignment, randomized trials: An application in focal segmental glomerulosclerosis.

Dynamic treatment regimens in small n, sequential, multiple assignment, randomized trials: An... Focal segmental glomerulosclerosis (FSGS) is a rare kidney disease with an annual incidence of 0.2-1.8 cases per 100,000 individuals. Most rare diseases like FSGS lack effective treatments, and it is difficult to implement clinical trials to study rare diseases because of the small sample sizes and difficulty in recruitment. A novel clinical trial design, a small sample, sequential, multiple assignment, randomized trial (snSMART) has been proposed to efficiently identify effective treatments for rare diseases. In this work, we review and expand the snSMART design applied to studying treatments for FSGS. The snSMART is a multistage trial that randomizes participants to one of three active treatments in the first stage and then re-randomizes those who do not respond to the initial treatment to one of the other two treatments in the second stage. A Bayesian joint stage model efficiently shares information across the stages to find the best first stage treatment. In this setting, we modify the previously presented design and methods (Wei et al. 2018) such that the proposed design includes a standard of care as opposed to three active treatments. We present Bayesian and frequentist models to compare the two novel therapies to the standard of care. Additionally, we show for the first time how we should estimate and compare tailored sequences of treatments or dynamic treatment regimens (DTRs) and contrast the results from our methods to existing methods for analyzing DTRs from a SMART. We also propose a sample size calculation method for our snSMART design when implementing the frequentist model with Dunnett's correction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Contemporary clinical trials Pubmed

Dynamic treatment regimens in small n, sequential, multiple assignment, randomized trials: An application in focal segmental glomerulosclerosis.

Contemporary clinical trials, Volume 92: 1 – May 4, 2020
Preview Only

Dynamic treatment regimens in small n, sequential, multiple assignment, randomized trials: An application in focal segmental glomerulosclerosis.

Contemporary clinical trials, Volume 92: 1 – May 4, 2020

Abstract

Focal segmental glomerulosclerosis (FSGS) is a rare kidney disease with an annual incidence of 0.2-1.8 cases per 100,000 individuals. Most rare diseases like FSGS lack effective treatments, and it is difficult to implement clinical trials to study rare diseases because of the small sample sizes and difficulty in recruitment. A novel clinical trial design, a small sample, sequential, multiple assignment, randomized trial (snSMART) has been proposed to efficiently identify effective treatments for rare diseases. In this work, we review and expand the snSMART design applied to studying treatments for FSGS. The snSMART is a multistage trial that randomizes participants to one of three active treatments in the first stage and then re-randomizes those who do not respond to the initial treatment to one of the other two treatments in the second stage. A Bayesian joint stage model efficiently shares information across the stages to find the best first stage treatment. In this setting, we modify the previously presented design and methods (Wei et al. 2018) such that the proposed design includes a standard of care as opposed to three active treatments. We present Bayesian and frequentist models to compare the two novel therapies to the standard of care. Additionally, we show for the first time how we should estimate and compare tailored sequences of treatments or dynamic treatment regimens (DTRs) and contrast the results from our methods to existing methods for analyzing DTRs from a SMART. We also propose a sample size calculation method for our snSMART design when implementing the frequentist model with Dunnett's correction.
Loading next page...
 
/lp/pubmed/dynamic-treatment-regimens-in-small-n-sequential-multiple-assignment-g41CamVutu
DOI
10.1016/j.cct.2020.105989
pmid
32200006

Abstract

Focal segmental glomerulosclerosis (FSGS) is a rare kidney disease with an annual incidence of 0.2-1.8 cases per 100,000 individuals. Most rare diseases like FSGS lack effective treatments, and it is difficult to implement clinical trials to study rare diseases because of the small sample sizes and difficulty in recruitment. A novel clinical trial design, a small sample, sequential, multiple assignment, randomized trial (snSMART) has been proposed to efficiently identify effective treatments for rare diseases. In this work, we review and expand the snSMART design applied to studying treatments for FSGS. The snSMART is a multistage trial that randomizes participants to one of three active treatments in the first stage and then re-randomizes those who do not respond to the initial treatment to one of the other two treatments in the second stage. A Bayesian joint stage model efficiently shares information across the stages to find the best first stage treatment. In this setting, we modify the previously presented design and methods (Wei et al. 2018) such that the proposed design includes a standard of care as opposed to three active treatments. We present Bayesian and frequentist models to compare the two novel therapies to the standard of care. Additionally, we show for the first time how we should estimate and compare tailored sequences of treatments or dynamic treatment regimens (DTRs) and contrast the results from our methods to existing methods for analyzing DTRs from a SMART. We also propose a sample size calculation method for our snSMART design when implementing the frequentist model with Dunnett's correction.

Journal

Contemporary clinical trialsPubmed

Published: May 4, 2020

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off