Disrotatory Ring-Opening of Furans Gives Stereocontrol.

Disrotatory Ring-Opening of Furans Gives Stereocontrol. The ring-opening of 2-methylfuran and 2,3-dihydro-5-methylfuran catalyzed by the Lewis acid catalyst tris(pentafluorophenyl)borane in the presence of hydrosilanes was studied using quantum chemical methods. In a previous study, it was suggested that the stereoselective formation of the product is due to a nucleophilic vinylic substitution (SNV) during the reaction. Our calculations show that the pathway involving the SNV reaction is energetically not accessible. Instead, the intramolecular C-O bond cleavage is found to be much more favorable in energy for the ring opening reaction. The experimentally observed excellent stereoselectivity toward the Z-isomer product originates from an intrinsic preference of the furan ring to couple the C-O bond cleavage with a disrotatory motion of the oxygen and carbon fragments. This stereoselective feature is naturally programmed into the furan ring manifold and should be generally exploitable for engineering stereoselective ring-opening processes of bioderived furans. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of organic chemistry Pubmed

Disrotatory Ring-Opening of Furans Gives Stereocontrol.

The Journal of organic chemistry, Volume 84 (17): 7 – Sep 23, 2019
Preview Only

Disrotatory Ring-Opening of Furans Gives Stereocontrol.

The Journal of organic chemistry, Volume 84 (17): 7 – Sep 23, 2019

Abstract

The ring-opening of 2-methylfuran and 2,3-dihydro-5-methylfuran catalyzed by the Lewis acid catalyst tris(pentafluorophenyl)borane in the presence of hydrosilanes was studied using quantum chemical methods. In a previous study, it was suggested that the stereoselective formation of the product is due to a nucleophilic vinylic substitution (SNV) during the reaction. Our calculations show that the pathway involving the SNV reaction is energetically not accessible. Instead, the intramolecular C-O bond cleavage is found to be much more favorable in energy for the ring opening reaction. The experimentally observed excellent stereoselectivity toward the Z-isomer product originates from an intrinsic preference of the furan ring to couple the C-O bond cleavage with a disrotatory motion of the oxygen and carbon fragments. This stereoselective feature is naturally programmed into the furan ring manifold and should be generally exploitable for engineering stereoselective ring-opening processes of bioderived furans.
Loading next page...
 
/lp/pubmed/disrotatory-ring-opening-of-furans-gives-stereocontrol-eci2GZHsE8
DOI
10.1021/acs.joc.9b01627

Abstract

The ring-opening of 2-methylfuran and 2,3-dihydro-5-methylfuran catalyzed by the Lewis acid catalyst tris(pentafluorophenyl)borane in the presence of hydrosilanes was studied using quantum chemical methods. In a previous study, it was suggested that the stereoselective formation of the product is due to a nucleophilic vinylic substitution (SNV) during the reaction. Our calculations show that the pathway involving the SNV reaction is energetically not accessible. Instead, the intramolecular C-O bond cleavage is found to be much more favorable in energy for the ring opening reaction. The experimentally observed excellent stereoselectivity toward the Z-isomer product originates from an intrinsic preference of the furan ring to couple the C-O bond cleavage with a disrotatory motion of the oxygen and carbon fragments. This stereoselective feature is naturally programmed into the furan ring manifold and should be generally exploitable for engineering stereoselective ring-opening processes of bioderived furans.

Journal

The Journal of organic chemistryPubmed

Published: Sep 23, 2019

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off