Degenerate consensus sequences in the 3'-untranslated regions of cellular mRNAs as specific motifs potentially involved in the YB-1-mediated packaging of these mRNAs.

Degenerate consensus sequences in the 3'-untranslated regions of cellular mRNAs as specific... The multifunctional protein YB-1 has previously been shown to be the only protein of the cytoplasmic extract of HEK293 cells, which is able to specifically interact with imperfect RNA hairpins containing motifs that are often found in exosomal (e) RNAs. In addition, it has been revealed that similar hairpins formed by degenerate consensus sequences corresponding to three eRNA-specific motifs are responsible for the cooperative binding of YB-1 to RNA in vitro. Here, using the photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation method applied to HEK293 cells producing FLAG-labeled YB-1, we identified mRNAs cross-linked to YB-1 in vivo and then carried out a search for the aforementioned sequences in the regions of the YB-1 cross-linking sites. It turned out that many of the mRNAs found cross-linked to YB-1 encode proteins associated with various regulatory processes, including responses to stress. More than half of all cross-linked mRNAs contained degenerate consensus sequences, which were preferably located in 3'-untranslated regions (UTRs), where most of the YB-1 cross-linking sites appeared, although not close to these sequences. Furthermore, YB-1 was mainly cross-linked to those mRNAs with degenerate consensus sequences, which could be classified as packaged because their translation levels were low compared to cellular levels. This suggests that the cooperative binding of YB-1 to mRNAs through the above sequences probably triggers the well-known multimerization of YB-l, leading to the packaging of these mRNAs. Thus, our findings indicate a previously unknown link between the degenerate consensus sequences present in the 3'-UTRs of many cytoplasmic mRNAs and YB-1-mediated translational silencing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochimie Pubmed

Degenerate consensus sequences in the 3'-untranslated regions of cellular mRNAs as specific motifs potentially involved in the YB-1-mediated packaging of these mRNAs.

Preview Only

Degenerate consensus sequences in the 3'-untranslated regions of cellular mRNAs as specific motifs potentially involved in the YB-1-mediated packaging of these mRNAs.

Biochimie, Volume 170: 11 – Feb 9, 2020

Abstract

The multifunctional protein YB-1 has previously been shown to be the only protein of the cytoplasmic extract of HEK293 cells, which is able to specifically interact with imperfect RNA hairpins containing motifs that are often found in exosomal (e) RNAs. In addition, it has been revealed that similar hairpins formed by degenerate consensus sequences corresponding to three eRNA-specific motifs are responsible for the cooperative binding of YB-1 to RNA in vitro. Here, using the photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation method applied to HEK293 cells producing FLAG-labeled YB-1, we identified mRNAs cross-linked to YB-1 in vivo and then carried out a search for the aforementioned sequences in the regions of the YB-1 cross-linking sites. It turned out that many of the mRNAs found cross-linked to YB-1 encode proteins associated with various regulatory processes, including responses to stress. More than half of all cross-linked mRNAs contained degenerate consensus sequences, which were preferably located in 3'-untranslated regions (UTRs), where most of the YB-1 cross-linking sites appeared, although not close to these sequences. Furthermore, YB-1 was mainly cross-linked to those mRNAs with degenerate consensus sequences, which could be classified as packaged because their translation levels were low compared to cellular levels. This suggests that the cooperative binding of YB-1 to mRNAs through the above sequences probably triggers the well-known multimerization of YB-l, leading to the packaging of these mRNAs. Thus, our findings indicate a previously unknown link between the degenerate consensus sequences present in the 3'-UTRs of many cytoplasmic mRNAs and YB-1-mediated translational silencing.
Loading next page...
 
/lp/pubmed/degenerate-consensus-sequences-in-the-3-untranslated-regions-of-TUcwETBSit
DOI
10.1016/j.biochi.2020.01.005
pmid
31935443

Abstract

The multifunctional protein YB-1 has previously been shown to be the only protein of the cytoplasmic extract of HEK293 cells, which is able to specifically interact with imperfect RNA hairpins containing motifs that are often found in exosomal (e) RNAs. In addition, it has been revealed that similar hairpins formed by degenerate consensus sequences corresponding to three eRNA-specific motifs are responsible for the cooperative binding of YB-1 to RNA in vitro. Here, using the photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation method applied to HEK293 cells producing FLAG-labeled YB-1, we identified mRNAs cross-linked to YB-1 in vivo and then carried out a search for the aforementioned sequences in the regions of the YB-1 cross-linking sites. It turned out that many of the mRNAs found cross-linked to YB-1 encode proteins associated with various regulatory processes, including responses to stress. More than half of all cross-linked mRNAs contained degenerate consensus sequences, which were preferably located in 3'-untranslated regions (UTRs), where most of the YB-1 cross-linking sites appeared, although not close to these sequences. Furthermore, YB-1 was mainly cross-linked to those mRNAs with degenerate consensus sequences, which could be classified as packaged because their translation levels were low compared to cellular levels. This suggests that the cooperative binding of YB-1 to mRNAs through the above sequences probably triggers the well-known multimerization of YB-l, leading to the packaging of these mRNAs. Thus, our findings indicate a previously unknown link between the degenerate consensus sequences present in the 3'-UTRs of many cytoplasmic mRNAs and YB-1-mediated translational silencing.

Journal

BiochimiePubmed

Published: Feb 9, 2020

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off