Cytoprotective effects of berry anthocyanins against induced oxidative stress and inflammation in primary human diabetic aortic endothelial cells.

Cytoprotective effects of berry anthocyanins against induced oxidative stress and inflammation in... Type 2 diabetes is associated with oxidative stress and low-grade inflammation resulting in endothelial dysfunction (ED). This study determined to explore the protective effects of berry-derived anthocyanins (AC) with potent antioxidant and anti-inflammatory activities in human diabetic endothelial cells upon oxidative and inflammatory stressors. Cultured healthy human aortic endothelial cells (HAEC) and diabetic human aortic endothelial cells (D-HAEC) exposed to oxidative stress by hydrogen peroxide (H2O2, 75 μM) and lipopolysaccharide (LPS, 1 μg/mL) as an inflammatory inducer before treatment with AC (50 μl/ml). The results from cytotoxicity assays showed that AC had no significant effects in cell viability (P-value < 0.0001), and exposure to H2O2 75 μM had a less toxic effect (P-value < 0.05). Although, AC significantly decreased H2O2-induced cytotoxicity and oxidative stress in both HAEC and D-HAEC cell lines (P-value < 0.0001), no positive impact of AC was found on the GSSG/GSH ratios (P-value < 0.05). Exposure to the LPS increased the production of IL-6 in both HAEC and D-HAEC cell lines (P-value < 0.0001), whereas AC treatment reduced LPS-induced IL-6 production in both cell lines with a more robust impact on D-HAEC (P-value < 0.0001). While LPS increased inflammasome assembling and caspase-1 activation, AC treatment inhibited caspase-1 activation in D-HAEC (P ≤ 0.05). This study indicated that berry anthocyanins reduced oxidative stress and inflammation via the inhibition of the NF-ƙB signaling pathway, which contributes to mitigating the diabetes-induced up-regulation of NF-ƙB. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chemico-biological interactions Pubmed

Cytoprotective effects of berry anthocyanins against induced oxidative stress and inflammation in primary human diabetic aortic endothelial cells.

Chemico-biological interactions, Volume 317: 1 – Feb 14, 2020
Preview Only

Cytoprotective effects of berry anthocyanins against induced oxidative stress and inflammation in primary human diabetic aortic endothelial cells.

Chemico-biological interactions, Volume 317: 1 – Feb 14, 2020

Abstract

Type 2 diabetes is associated with oxidative stress and low-grade inflammation resulting in endothelial dysfunction (ED). This study determined to explore the protective effects of berry-derived anthocyanins (AC) with potent antioxidant and anti-inflammatory activities in human diabetic endothelial cells upon oxidative and inflammatory stressors. Cultured healthy human aortic endothelial cells (HAEC) and diabetic human aortic endothelial cells (D-HAEC) exposed to oxidative stress by hydrogen peroxide (H2O2, 75 μM) and lipopolysaccharide (LPS, 1 μg/mL) as an inflammatory inducer before treatment with AC (50 μl/ml). The results from cytotoxicity assays showed that AC had no significant effects in cell viability (P-value < 0.0001), and exposure to H2O2 75 μM had a less toxic effect (P-value < 0.05). Although, AC significantly decreased H2O2-induced cytotoxicity and oxidative stress in both HAEC and D-HAEC cell lines (P-value < 0.0001), no positive impact of AC was found on the GSSG/GSH ratios (P-value < 0.05). Exposure to the LPS increased the production of IL-6 in both HAEC and D-HAEC cell lines (P-value < 0.0001), whereas AC treatment reduced LPS-induced IL-6 production in both cell lines with a more robust impact on D-HAEC (P-value < 0.0001). While LPS increased inflammasome assembling and caspase-1 activation, AC treatment inhibited caspase-1 activation in D-HAEC (P ≤ 0.05). This study indicated that berry anthocyanins reduced oxidative stress and inflammation via the inhibition of the NF-ƙB signaling pathway, which contributes to mitigating the diabetes-induced up-regulation of NF-ƙB.
Loading next page...
 
/lp/pubmed/cytoprotective-effects-of-berry-anthocyanins-against-induced-oxidative-8xof3QbiB8
DOI
10.1016/j.cbi.2020.108940
pmid
31935365

Abstract

Type 2 diabetes is associated with oxidative stress and low-grade inflammation resulting in endothelial dysfunction (ED). This study determined to explore the protective effects of berry-derived anthocyanins (AC) with potent antioxidant and anti-inflammatory activities in human diabetic endothelial cells upon oxidative and inflammatory stressors. Cultured healthy human aortic endothelial cells (HAEC) and diabetic human aortic endothelial cells (D-HAEC) exposed to oxidative stress by hydrogen peroxide (H2O2, 75 μM) and lipopolysaccharide (LPS, 1 μg/mL) as an inflammatory inducer before treatment with AC (50 μl/ml). The results from cytotoxicity assays showed that AC had no significant effects in cell viability (P-value < 0.0001), and exposure to H2O2 75 μM had a less toxic effect (P-value < 0.05). Although, AC significantly decreased H2O2-induced cytotoxicity and oxidative stress in both HAEC and D-HAEC cell lines (P-value < 0.0001), no positive impact of AC was found on the GSSG/GSH ratios (P-value < 0.05). Exposure to the LPS increased the production of IL-6 in both HAEC and D-HAEC cell lines (P-value < 0.0001), whereas AC treatment reduced LPS-induced IL-6 production in both cell lines with a more robust impact on D-HAEC (P-value < 0.0001). While LPS increased inflammasome assembling and caspase-1 activation, AC treatment inhibited caspase-1 activation in D-HAEC (P ≤ 0.05). This study indicated that berry anthocyanins reduced oxidative stress and inflammation via the inhibition of the NF-ƙB signaling pathway, which contributes to mitigating the diabetes-induced up-regulation of NF-ƙB.

Journal

Chemico-biological interactionsPubmed

Published: Feb 14, 2020

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off