Chronic Unilateral Hearing Loss Disrupts Neural Tuning to Sound-Source Azimuth in the Rat Primary Auditory Cortex.

Chronic Unilateral Hearing Loss Disrupts Neural Tuning to Sound-Source Azimuth in the Rat Primary... Accurate sound localization requires normal binaural input and precise auditory neuronal representation of sound spatial locations. Previous studies showed that unilateral hearing loss profoundly impaired the sound localization abilities. However, the underlying neural mechanism is not fully understood. Here, we investigated how chronic unilateral conductive hearing loss (UCHL) affected the neural tuning to sound source azimuth in the primary auditory cortex (AI). The UCHL was manipulated by the removal of tympanic membrane and malleus in the right ear of young (P14) rats and adult (P57) rats. We recorded the azimuth tuning of neurons in the left AI contralateral to the operated ear in the two groups of rats that experienced 2 months of UCHL, and in the left AI of age-matched control rats. We found that AI neurons in control rats showed predominant preference to sound from contralateral azimuths. However, UCHL weakened the cortical neuronal representation of contralateral azimuths on the operated ear side and strengthened the cortical neuronal representation of ipsilateral azimuths on the intact ear side. This effect was stronger in rats with UCHL at young age than in rats with UCHL in adulthood. Moreover, UCHL degraded the azimuth selectivity and azimuth sensitivity of AI neurons, and this effect was stronger in rats with UCHL in adulthood than in rats with UCHL at young age. These findings highlight a remarkable age-related experience-dependent plasticity of neural tuning to sound source azimuth in AI, and imply a neural mechanism for the impacts of chronic UCHL on sound localization abilities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Frontiers in neuroscience Pubmed

Chronic Unilateral Hearing Loss Disrupts Neural Tuning to Sound-Source Azimuth in the Rat Primary Auditory Cortex.

Frontiers in neuroscience, Volume 13: 1 – Jun 10, 2019
Preview Only

Chronic Unilateral Hearing Loss Disrupts Neural Tuning to Sound-Source Azimuth in the Rat Primary Auditory Cortex.

Frontiers in neuroscience, Volume 13: 1 – Jun 10, 2019

Abstract

Accurate sound localization requires normal binaural input and precise auditory neuronal representation of sound spatial locations. Previous studies showed that unilateral hearing loss profoundly impaired the sound localization abilities. However, the underlying neural mechanism is not fully understood. Here, we investigated how chronic unilateral conductive hearing loss (UCHL) affected the neural tuning to sound source azimuth in the primary auditory cortex (AI). The UCHL was manipulated by the removal of tympanic membrane and malleus in the right ear of young (P14) rats and adult (P57) rats. We recorded the azimuth tuning of neurons in the left AI contralateral to the operated ear in the two groups of rats that experienced 2 months of UCHL, and in the left AI of age-matched control rats. We found that AI neurons in control rats showed predominant preference to sound from contralateral azimuths. However, UCHL weakened the cortical neuronal representation of contralateral azimuths on the operated ear side and strengthened the cortical neuronal representation of ipsilateral azimuths on the intact ear side. This effect was stronger in rats with UCHL at young age than in rats with UCHL in adulthood. Moreover, UCHL degraded the azimuth selectivity and azimuth sensitivity of AI neurons, and this effect was stronger in rats with UCHL in adulthood than in rats with UCHL at young age. These findings highlight a remarkable age-related experience-dependent plasticity of neural tuning to sound source azimuth in AI, and imply a neural mechanism for the impacts of chronic UCHL on sound localization abilities.
Loading next page...
 
/lp/pubmed/chronic-unilateral-hearing-loss-disrupts-neural-tuning-to-sound-source-JvNnNDlQM9
ISSN
1662-4548
DOI
10.3389/fnins.2019.00477
pmid
31133797

Abstract

Accurate sound localization requires normal binaural input and precise auditory neuronal representation of sound spatial locations. Previous studies showed that unilateral hearing loss profoundly impaired the sound localization abilities. However, the underlying neural mechanism is not fully understood. Here, we investigated how chronic unilateral conductive hearing loss (UCHL) affected the neural tuning to sound source azimuth in the primary auditory cortex (AI). The UCHL was manipulated by the removal of tympanic membrane and malleus in the right ear of young (P14) rats and adult (P57) rats. We recorded the azimuth tuning of neurons in the left AI contralateral to the operated ear in the two groups of rats that experienced 2 months of UCHL, and in the left AI of age-matched control rats. We found that AI neurons in control rats showed predominant preference to sound from contralateral azimuths. However, UCHL weakened the cortical neuronal representation of contralateral azimuths on the operated ear side and strengthened the cortical neuronal representation of ipsilateral azimuths on the intact ear side. This effect was stronger in rats with UCHL at young age than in rats with UCHL in adulthood. Moreover, UCHL degraded the azimuth selectivity and azimuth sensitivity of AI neurons, and this effect was stronger in rats with UCHL in adulthood than in rats with UCHL at young age. These findings highlight a remarkable age-related experience-dependent plasticity of neural tuning to sound source azimuth in AI, and imply a neural mechanism for the impacts of chronic UCHL on sound localization abilities.

Journal

Frontiers in neurosciencePubmed

Published: Jun 10, 2019

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off