Centimeter-Scale and Highly Crystalline Two-Dimensional Alcohol: Evidence for Graphenol (C6OH).

Centimeter-Scale and Highly Crystalline Two-Dimensional Alcohol: Evidence for Graphenol (C6OH). We report a chemical route to synthesize centimeter-scale stoichiometric "graphenol (C6OH1)", a 2D crystalline alcohol, via vapor phase hydroxylation of epitaxial graphene on Cu(111). Atomic resolution scanning tunneling microscopy revealed this highly-ordered configuration of graphenol and low energy electron diffraction studies on a large-area single crystal graphene film demonstrated the feasibility of the same superstructure being achieved at the centimeter length scale. Periodic density functional theory (DFT) calculations about the formation of C6(OH)1 and its electronic structure are also reported. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nano letters Pubmed

Centimeter-Scale and Highly Crystalline Two-Dimensional Alcohol: Evidence for Graphenol (C6OH).

Preview Only

Centimeter-Scale and Highly Crystalline Two-Dimensional Alcohol: Evidence for Graphenol (C6OH).

Nano letters, Volume 20 (3): 6 – Mar 17, 2020

Abstract

We report a chemical route to synthesize centimeter-scale stoichiometric "graphenol (C6OH1)", a 2D crystalline alcohol, via vapor phase hydroxylation of epitaxial graphene on Cu(111). Atomic resolution scanning tunneling microscopy revealed this highly-ordered configuration of graphenol and low energy electron diffraction studies on a large-area single crystal graphene film demonstrated the feasibility of the same superstructure being achieved at the centimeter length scale. Periodic density functional theory (DFT) calculations about the formation of C6(OH)1 and its electronic structure are also reported.
Loading next page...
 
/lp/pubmed/centimeter-scale-and-highly-crystalline-two-dimensional-alcohol-cqdOin71GI
DOI
10.1021/acs.nanolett.0c00103
pmid
32053385

Abstract

We report a chemical route to synthesize centimeter-scale stoichiometric "graphenol (C6OH1)", a 2D crystalline alcohol, via vapor phase hydroxylation of epitaxial graphene on Cu(111). Atomic resolution scanning tunneling microscopy revealed this highly-ordered configuration of graphenol and low energy electron diffraction studies on a large-area single crystal graphene film demonstrated the feasibility of the same superstructure being achieved at the centimeter length scale. Periodic density functional theory (DFT) calculations about the formation of C6(OH)1 and its electronic structure are also reported.

Journal

Nano lettersPubmed

Published: Mar 17, 2020

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off