Biosimilar Gene Therapy: Investigational Assessment of Secukinumab Gene Therapy.

Biosimilar Gene Therapy: Investigational Assessment of Secukinumab Gene Therapy. Tumor necrosis factor-alpha (TNF-α), checkpoint inhibitors, and interleukin-17 (IL-17) are critical targets in inflammation and autoimmune diseases. Monoclonal antibodies (mAbs) have a successful portfolio in the treatment of chronic diseases. With the current progress in stem cells and gene therapy technologies, there is the promise of replacing costly mAbs production in bioreactors with a more direct and cost-effective production method inside the patient's cells. In this paper we examine the results of an investigational assessment of secukinumab gene therapy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cell journal Pubmed

Biosimilar Gene Therapy: Investigational Assessment of Secukinumab Gene Therapy.

Preview Only

Biosimilar Gene Therapy: Investigational Assessment of Secukinumab Gene Therapy.

Cell journal, Volume 21 (4): 11 – Sep 11, 2019

Abstract

Tumor necrosis factor-alpha (TNF-α), checkpoint inhibitors, and interleukin-17 (IL-17) are critical targets in inflammation and autoimmune diseases. Monoclonal antibodies (mAbs) have a successful portfolio in the treatment of chronic diseases. With the current progress in stem cells and gene therapy technologies, there is the promise of replacing costly mAbs production in bioreactors with a more direct and cost-effective production method inside the patient's cells. In this paper we examine the results of an investigational assessment of secukinumab gene therapy.
Loading next page...
 
/lp/pubmed/biosimilar-gene-therapy-investigational-assessment-of-secukinumab-gene-CWxkOjldS1
ISSN
2228-5806
DOI
10.22074/cellj.2020.6309

Abstract

Tumor necrosis factor-alpha (TNF-α), checkpoint inhibitors, and interleukin-17 (IL-17) are critical targets in inflammation and autoimmune diseases. Monoclonal antibodies (mAbs) have a successful portfolio in the treatment of chronic diseases. With the current progress in stem cells and gene therapy technologies, there is the promise of replacing costly mAbs production in bioreactors with a more direct and cost-effective production method inside the patient's cells. In this paper we examine the results of an investigational assessment of secukinumab gene therapy.

Journal

Cell journalPubmed

Published: Sep 11, 2019

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off