Application of Symmetry Functions to Large Chemical Spaces Using a Convolutional Neural Network.

Application of Symmetry Functions to Large Chemical Spaces Using a Convolutional Neural Network. The use of machine learning in chemistry is on the rise for the prediction of chemical properties. The input feature representation or descriptor in these applications is an important factor that affects the accuracy as well as the extent of the explored chemical space. Here, we present the periodic table tensor descriptor that combines features from Behler-Parrinello's symmetry functions and a periodic table representation. Using our descriptor and a convolutional neural network model, we achieved 2.2 kcal/mol and 94 meV/atom mean absolute error for the prediction of the atomization energy of organic molecules in the QM9 data set and the formation energy of materials from Materials Project data set, respectively. We also show that structures optimized with a force field derived from this modelcan be used as input to predict the atomization energies of molecules at density functional theory level. Our approach extends the application of Behler-Parrinello's symmetry functions without a limitation on the number of elements, which is highly promising for universal property calculators in large chemical spaces. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of chemical information and modeling Pubmed

Application of Symmetry Functions to Large Chemical Spaces Using a Convolutional Neural Network.

Journal of chemical information and modeling, Volume 60 (4): 8 – Apr 27, 2020
Preview Only

Application of Symmetry Functions to Large Chemical Spaces Using a Convolutional Neural Network.

Journal of chemical information and modeling, Volume 60 (4): 8 – Apr 27, 2020

Abstract

The use of machine learning in chemistry is on the rise for the prediction of chemical properties. The input feature representation or descriptor in these applications is an important factor that affects the accuracy as well as the extent of the explored chemical space. Here, we present the periodic table tensor descriptor that combines features from Behler-Parrinello's symmetry functions and a periodic table representation. Using our descriptor and a convolutional neural network model, we achieved 2.2 kcal/mol and 94 meV/atom mean absolute error for the prediction of the atomization energy of organic molecules in the QM9 data set and the formation energy of materials from Materials Project data set, respectively. We also show that structures optimized with a force field derived from this modelcan be used as input to predict the atomization energies of molecules at density functional theory level. Our approach extends the application of Behler-Parrinello's symmetry functions without a limitation on the number of elements, which is highly promising for universal property calculators in large chemical spaces.
Loading next page...
 
/lp/pubmed/application-of-symmetry-functions-to-large-chemical-spaces-using-a-iXIRB1DOzr
DOI
10.1021/acs.jcim.9b00835
pmid
32053367

Abstract

The use of machine learning in chemistry is on the rise for the prediction of chemical properties. The input feature representation or descriptor in these applications is an important factor that affects the accuracy as well as the extent of the explored chemical space. Here, we present the periodic table tensor descriptor that combines features from Behler-Parrinello's symmetry functions and a periodic table representation. Using our descriptor and a convolutional neural network model, we achieved 2.2 kcal/mol and 94 meV/atom mean absolute error for the prediction of the atomization energy of organic molecules in the QM9 data set and the formation energy of materials from Materials Project data set, respectively. We also show that structures optimized with a force field derived from this modelcan be used as input to predict the atomization energies of molecules at density functional theory level. Our approach extends the application of Behler-Parrinello's symmetry functions without a limitation on the number of elements, which is highly promising for universal property calculators in large chemical spaces.

Journal

Journal of chemical information and modelingPubmed

Published: Apr 27, 2020

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off