APD optimal bias voltage compensation method based on machine learning.

APD optimal bias voltage compensation method based on machine learning. The signal-to-noise ratio (SNR) of avalanche photodiode (APD) in optical detection system is greatly influenced by background radiation and operating temperature, so an APD optimal bias voltage compensation method based on machine learning is designed to accurately judge the current laser emission state and APD working state so that dichotomy compensation can be carried out to make APD work in optimal state. By means of cross-verification, the accuracy of judging laser emission state and APD working state is as high as 100% and 99.3% separately, then the number of input variables in the model is reduced appropriately by experiment and the prediction speed of the algorithm is further improved. Finally, road detection application is taken as the experimental background and comparison between the proposed method and the most widely used signal amplitude feedback compensation method is carried out. The results of this study suggest that the proposed APD optimal bias voltage compensation method based on machine learning offers a new and promising approach. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ISA transactions Pubmed

APD optimal bias voltage compensation method based on machine learning.

ISA transactions: 1 – Aug 11, 2019
Preview Only

APD optimal bias voltage compensation method based on machine learning.

ISA transactions: 1 – Aug 11, 2019

Abstract

The signal-to-noise ratio (SNR) of avalanche photodiode (APD) in optical detection system is greatly influenced by background radiation and operating temperature, so an APD optimal bias voltage compensation method based on machine learning is designed to accurately judge the current laser emission state and APD working state so that dichotomy compensation can be carried out to make APD work in optimal state. By means of cross-verification, the accuracy of judging laser emission state and APD working state is as high as 100% and 99.3% separately, then the number of input variables in the model is reduced appropriately by experiment and the prediction speed of the algorithm is further improved. Finally, road detection application is taken as the experimental background and comparison between the proposed method and the most widely used signal amplitude feedback compensation method is carried out. The results of this study suggest that the proposed APD optimal bias voltage compensation method based on machine learning offers a new and promising approach.
Loading next page...
 
/lp/pubmed/apd-optimal-bias-voltage-compensation-method-based-on-machine-learning-vljWttbCGW
DOI
10.1016/j.isatra.2019.08.016

Abstract

The signal-to-noise ratio (SNR) of avalanche photodiode (APD) in optical detection system is greatly influenced by background radiation and operating temperature, so an APD optimal bias voltage compensation method based on machine learning is designed to accurately judge the current laser emission state and APD working state so that dichotomy compensation can be carried out to make APD work in optimal state. By means of cross-verification, the accuracy of judging laser emission state and APD working state is as high as 100% and 99.3% separately, then the number of input variables in the model is reduced appropriately by experiment and the prediction speed of the algorithm is further improved. Finally, road detection application is taken as the experimental background and comparison between the proposed method and the most widely used signal amplitude feedback compensation method is carried out. The results of this study suggest that the proposed APD optimal bias voltage compensation method based on machine learning offers a new and promising approach.

Journal

ISA transactionsPubmed

Published: Aug 11, 2019

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off