Adsorption Properties of Methane, Ethane, and Hexane on Mesoporous Organic Polymers Prepared by the Flash Freezing Method.

Adsorption Properties of Methane, Ethane, and Hexane on Mesoporous Organic Polymers Prepared by... Mesoporous organic polymers, including poly(p-phenylene ether-sulfone) (PES), polysulfone (PSF), poly(bisphenol A-carbonate) (PC), and polyvinyl chloride (PVC), were prepared by the previously reported flash freezing method. For the four polymers, the vapor adsorption of water and hydrocarbons (C2H6, C3H8, and C6H14) was examined. PVC showed that the hydrocarbon adsorption was more selective than water adsorption. The isosteric heats of adsorption were determined from the temperature dependence of the vapor adsorption of the hydrocarbons and water. This showed the weak interaction of PVC with water and its stronger (but not too strong) interaction with hydrocarbons. The hydrophobicity and mesoporosity of PVC were determined to be suitable for such selective adsorption of hydrocarbons compared to that of water with low energy consumption during the desorption process of the hydrocarbons. Mesoporous PVC should considered a candidate for the recovery of flammable gases from water/hydrocarbon mixtures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Langmuir : the ACS journal of surfaces and colloids Pubmed

Adsorption Properties of Methane, Ethane, and Hexane on Mesoporous Organic Polymers Prepared by the Flash Freezing Method.

Langmuir : the ACS journal of surfaces and colloids, Volume 36 (9): 7 – Mar 10, 2020
Preview Only

Adsorption Properties of Methane, Ethane, and Hexane on Mesoporous Organic Polymers Prepared by the Flash Freezing Method.

Langmuir : the ACS journal of surfaces and colloids, Volume 36 (9): 7 – Mar 10, 2020

Abstract

Mesoporous organic polymers, including poly(p-phenylene ether-sulfone) (PES), polysulfone (PSF), poly(bisphenol A-carbonate) (PC), and polyvinyl chloride (PVC), were prepared by the previously reported flash freezing method. For the four polymers, the vapor adsorption of water and hydrocarbons (C2H6, C3H8, and C6H14) was examined. PVC showed that the hydrocarbon adsorption was more selective than water adsorption. The isosteric heats of adsorption were determined from the temperature dependence of the vapor adsorption of the hydrocarbons and water. This showed the weak interaction of PVC with water and its stronger (but not too strong) interaction with hydrocarbons. The hydrophobicity and mesoporosity of PVC were determined to be suitable for such selective adsorption of hydrocarbons compared to that of water with low energy consumption during the desorption process of the hydrocarbons. Mesoporous PVC should considered a candidate for the recovery of flammable gases from water/hydrocarbon mixtures.
Loading next page...
 
/lp/pubmed/adsorption-properties-of-methane-ethane-and-hexane-on-mesoporous-9201XqEfKE
DOI
10.1021/acs.langmuir.9b03159
pmid
32053382

Abstract

Mesoporous organic polymers, including poly(p-phenylene ether-sulfone) (PES), polysulfone (PSF), poly(bisphenol A-carbonate) (PC), and polyvinyl chloride (PVC), were prepared by the previously reported flash freezing method. For the four polymers, the vapor adsorption of water and hydrocarbons (C2H6, C3H8, and C6H14) was examined. PVC showed that the hydrocarbon adsorption was more selective than water adsorption. The isosteric heats of adsorption were determined from the temperature dependence of the vapor adsorption of the hydrocarbons and water. This showed the weak interaction of PVC with water and its stronger (but not too strong) interaction with hydrocarbons. The hydrophobicity and mesoporosity of PVC were determined to be suitable for such selective adsorption of hydrocarbons compared to that of water with low energy consumption during the desorption process of the hydrocarbons. Mesoporous PVC should considered a candidate for the recovery of flammable gases from water/hydrocarbon mixtures.

Journal

Langmuir : the ACS journal of surfaces and colloidsPubmed

Published: Mar 10, 2020

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off