Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Translocation of apolipoprotein B across the endoplasmic reticulum is blocked in a nonhepatic cell line

Translocation of apolipoprotein B across the endoplasmic reticulum is blocked in a nonhepatic... To explore the process of lipoprotein assembly, plasmids encoding truncated forms of apolipoprotein B (apoB) were transfected into Chinese hamster ovary (CHO) fibroblasts. (One, encoding apoB53, the N-terminal 53% of apoB100, can direct the assembly and secretion of lipoproteins when expressed in hepatoma cells, while the other, encoding the shorter apoB15, does not direct lipoprotein assembly.) Expression of apoB15 in CHO cells resulted in the accumulation of apoB15 protein in both medium and cells. In contrast, apoB was not detectable in medium or within CHO cells transfected with the plasmid encoding apoB53, despite the expression of apoB53 mRNA. ApoB53 did accumulate within transfected cells incubated with the thiol protease inhibitor N-acetylleucylleucylnorleucinal (ALLN), suggesting that it is synthesized but completely degraded in the absence of the inhibitor. ApoB53 was not secreted despite its presence within ALLN-treated cells. Essentially all the apoB53 that accumulated in microsomes from ALLN-treated cells was associated with the membrane and was susceptible to degradation by exogenous trypsin, indicating exposure on the cytoplasmic face of the membrane. Thus, translocation of apoB53 across the endoplasmic reticulum membrane is blocked. However, the apoB53 bound to concanavalin A, suggesting that it is glycosylated and therefore partly exposed to the lumen as well. ApoB requires a unique process, not expressed in CHO fibroblasts, for its complete translocation and entrance into the secretory pathway. This process might account for the inability of abetalipoproteinemic patients to secrete apoB. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of the National Academy of Sciences PNAS

Translocation of apolipoprotein B across the endoplasmic reticulum is blocked in a nonhepatic cell line

Translocation of apolipoprotein B across the endoplasmic reticulum is blocked in a nonhepatic cell line

Proceedings of the National Academy of Sciences , Volume 89 (19): 9161 – Oct 1, 1992

Abstract

To explore the process of lipoprotein assembly, plasmids encoding truncated forms of apolipoprotein B (apoB) were transfected into Chinese hamster ovary (CHO) fibroblasts. (One, encoding apoB53, the N-terminal 53% of apoB100, can direct the assembly and secretion of lipoproteins when expressed in hepatoma cells, while the other, encoding the shorter apoB15, does not direct lipoprotein assembly.) Expression of apoB15 in CHO cells resulted in the accumulation of apoB15 protein in both medium and cells. In contrast, apoB was not detectable in medium or within CHO cells transfected with the plasmid encoding apoB53, despite the expression of apoB53 mRNA. ApoB53 did accumulate within transfected cells incubated with the thiol protease inhibitor N-acetylleucylleucylnorleucinal (ALLN), suggesting that it is synthesized but completely degraded in the absence of the inhibitor. ApoB53 was not secreted despite its presence within ALLN-treated cells. Essentially all the apoB53 that accumulated in microsomes from ALLN-treated cells was associated with the membrane and was susceptible to degradation by exogenous trypsin, indicating exposure on the cytoplasmic face of the membrane. Thus, translocation of apoB53 across the endoplasmic reticulum membrane is blocked. However, the apoB53 bound to concanavalin A, suggesting that it is glycosylated and therefore partly exposed to the lumen as well. ApoB requires a unique process, not expressed in CHO fibroblasts, for its complete translocation and entrance into the secretory pathway. This process might account for the inability of abetalipoproteinemic patients to secrete apoB.

Loading next page...
 
/lp/pnas/translocation-of-apolipoprotein-b-across-the-endoplasmic-reticulum-is-zTtaSxMdYi

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
PNAS
Copyright
Copyright ©2009 by the National Academy of Sciences
ISSN
0027-8424
eISSN
1091-6490
Publisher site
See Article on Publisher Site

Abstract

To explore the process of lipoprotein assembly, plasmids encoding truncated forms of apolipoprotein B (apoB) were transfected into Chinese hamster ovary (CHO) fibroblasts. (One, encoding apoB53, the N-terminal 53% of apoB100, can direct the assembly and secretion of lipoproteins when expressed in hepatoma cells, while the other, encoding the shorter apoB15, does not direct lipoprotein assembly.) Expression of apoB15 in CHO cells resulted in the accumulation of apoB15 protein in both medium and cells. In contrast, apoB was not detectable in medium or within CHO cells transfected with the plasmid encoding apoB53, despite the expression of apoB53 mRNA. ApoB53 did accumulate within transfected cells incubated with the thiol protease inhibitor N-acetylleucylleucylnorleucinal (ALLN), suggesting that it is synthesized but completely degraded in the absence of the inhibitor. ApoB53 was not secreted despite its presence within ALLN-treated cells. Essentially all the apoB53 that accumulated in microsomes from ALLN-treated cells was associated with the membrane and was susceptible to degradation by exogenous trypsin, indicating exposure on the cytoplasmic face of the membrane. Thus, translocation of apoB53 across the endoplasmic reticulum membrane is blocked. However, the apoB53 bound to concanavalin A, suggesting that it is glycosylated and therefore partly exposed to the lumen as well. ApoB requires a unique process, not expressed in CHO fibroblasts, for its complete translocation and entrance into the secretory pathway. This process might account for the inability of abetalipoproteinemic patients to secrete apoB.

Journal

Proceedings of the National Academy of SciencesPNAS

Published: Oct 1, 1992

There are no references for this article.