Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Epidermal loss of JunB leads to a SLE phenotype due to hyper IL-6 signaling

Epidermal loss of JunB leads to a SLE phenotype due to hyper IL-6 signaling Systemic lupus erythematosus (SLE) is a complex autoimmune disease affecting various tissues. Involvement of B and T cells as well as increased cytokine levels have been associated with disease manifestation. Recently, we demonstrated that mice with epidermal loss of JunB (JunBΔep) develop a myeloproliferative syndrome (MPS) due to high levels of G-CSF which are secreted by JunB-deficient keratinocytes. In addition, we show that JunBΔep mice develop a SLE phenotype linked to increased epidermal interleukin 6 (IL-6) secretion. Intercrosses with IL-6-deficient mice could rescue the SLE phenotype. Furthermore, we show that JunB binds to the IL-6 promoter and transcriptionally suppresses IL-6. Facial skin biopsies of human SLE patients similarly revealed low JunB protein expression and high IL-6, activated Stat3, Socs-1, and Socs-3 levels within lupus lesions. Thus, keratinocyte-induced IL-6 secretion can cause SLE and systemic autoimmunity. Our results support trials to use α-IL-6 receptor antibody therapy for treatment of SLE. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of the National Academy of Sciences PNAS

Epidermal loss of JunB leads to a SLE phenotype due to hyper IL-6 signaling

Proceedings of the National Academy of Sciences , Volume 106 (48): 20423 – Dec 1, 2009

Abstract

Systemic lupus erythematosus (SLE) is a complex autoimmune disease affecting various tissues. Involvement of B and T cells as well as increased cytokine levels have been associated with disease manifestation. Recently, we demonstrated that mice with epidermal loss of JunB (JunBΔep) develop a myeloproliferative syndrome (MPS) due to high levels of G-CSF which are secreted by JunB-deficient keratinocytes. In addition, we show that JunBΔep mice develop a SLE phenotype linked to increased epidermal interleukin 6 (IL-6) secretion. Intercrosses with IL-6-deficient mice could rescue the SLE phenotype. Furthermore, we show that JunB binds to the IL-6 promoter and transcriptionally suppresses IL-6. Facial skin biopsies of human SLE patients similarly revealed low JunB protein expression and high IL-6, activated Stat3, Socs-1, and Socs-3 levels within lupus lesions. Thus, keratinocyte-induced IL-6 secretion can cause SLE and systemic autoimmunity. Our results support trials to use α-IL-6 receptor antibody therapy for treatment of SLE.

Loading next page...
 
/lp/pnas/epidermal-loss-of-junb-leads-to-a-sle-phenotype-due-to-hyper-il-6-h2ICaafnv0

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
PNAS
Copyright
Copyright ©2010 by the National Academy of Sciences
ISSN
0027-8424
eISSN
1091-6490
Publisher site
See Article on Publisher Site

Abstract

Systemic lupus erythematosus (SLE) is a complex autoimmune disease affecting various tissues. Involvement of B and T cells as well as increased cytokine levels have been associated with disease manifestation. Recently, we demonstrated that mice with epidermal loss of JunB (JunBΔep) develop a myeloproliferative syndrome (MPS) due to high levels of G-CSF which are secreted by JunB-deficient keratinocytes. In addition, we show that JunBΔep mice develop a SLE phenotype linked to increased epidermal interleukin 6 (IL-6) secretion. Intercrosses with IL-6-deficient mice could rescue the SLE phenotype. Furthermore, we show that JunB binds to the IL-6 promoter and transcriptionally suppresses IL-6. Facial skin biopsies of human SLE patients similarly revealed low JunB protein expression and high IL-6, activated Stat3, Socs-1, and Socs-3 levels within lupus lesions. Thus, keratinocyte-induced IL-6 secretion can cause SLE and systemic autoimmunity. Our results support trials to use α-IL-6 receptor antibody therapy for treatment of SLE.

Journal

Proceedings of the National Academy of SciencesPNAS

Published: Dec 1, 2009

There are no references for this article.