Reflectance of Alaskan black spruce and white spruce foliage in relation to elevation and latitude

Reflectance of Alaskan black spruce and white spruce foliage in relation to elevation and latitude Leaf reflectance at visible and near-infrared wavelengths (400–1000 nm) is related primarily to pigmentation, leaf structure and water content, and is an important tool for studying stress physiology and relationships between plants and their growth environment. We studied reflectance of two co-occurring Alaskan conifers, black spruce (Picea mariana (Mill.) BSP) and white spruce (Picea glauca (Moench) Voss), at elevations from 60 to 930 m a.s.l. along a latitudinal gradient from 61° to 68° N. Black spruce samples were collected from 24 sites and white spruce from 30 sites. Overall, reflectance spectra of the two species were similar, but from 400 to 700 nm, needle reflectance was consistently higher in black spruce than in white spruce (all P ≤ 0.05). This difference is probably related to differences in epicuticular wax morphology or amount, and may represent a photoprotective mechanism in black spruce. Reflectance at visible wavelengths generally increased with elevation and latitude in both species, consistent with a general stress response. However, in a multiple regression, latitude and elevation explained only 25–45% of the total variation in the indices studied. Reflectance indices suggested that needle yellowness increased, whereas chlorophyll content and photochemical efficiency decreased with both elevation and latitude. These trends were consistent between species, but white spruce generally showed a much smaller (and insignificant) reflectance response to latitude compared with black spruce. Differences between species could be related to black spruce's ability to colonize more stressful sites and white spruce's greater competitiveness on less stressful sites, coupled with the effects of drainage and microtopography (which may vary less predictably with latitude than elevation) on species distribution. The black spruce results suggest that a 1000-m increase in elevation is roughly comparable with a 6° increase in latitude. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tree Physiology Oxford University Press

Reflectance of Alaskan black spruce and white spruce foliage in relation to elevation and latitude

Loading next page...
 
/lp/oxford-university-press/reflectance-of-alaskan-black-spruce-and-white-spruce-foliage-in-5PkezGj2P7
Publisher
Oxford University Press
Copyright
© Published by Oxford University Press.
ISSN
0829-318X
eISSN
1758-4469
DOI
10.1093/treephys/23.8.537
Publisher site
See Article on Publisher Site

Abstract

Leaf reflectance at visible and near-infrared wavelengths (400–1000 nm) is related primarily to pigmentation, leaf structure and water content, and is an important tool for studying stress physiology and relationships between plants and their growth environment. We studied reflectance of two co-occurring Alaskan conifers, black spruce (Picea mariana (Mill.) BSP) and white spruce (Picea glauca (Moench) Voss), at elevations from 60 to 930 m a.s.l. along a latitudinal gradient from 61° to 68° N. Black spruce samples were collected from 24 sites and white spruce from 30 sites. Overall, reflectance spectra of the two species were similar, but from 400 to 700 nm, needle reflectance was consistently higher in black spruce than in white spruce (all P ≤ 0.05). This difference is probably related to differences in epicuticular wax morphology or amount, and may represent a photoprotective mechanism in black spruce. Reflectance at visible wavelengths generally increased with elevation and latitude in both species, consistent with a general stress response. However, in a multiple regression, latitude and elevation explained only 25–45% of the total variation in the indices studied. Reflectance indices suggested that needle yellowness increased, whereas chlorophyll content and photochemical efficiency decreased with both elevation and latitude. These trends were consistent between species, but white spruce generally showed a much smaller (and insignificant) reflectance response to latitude compared with black spruce. Differences between species could be related to black spruce's ability to colonize more stressful sites and white spruce's greater competitiveness on less stressful sites, coupled with the effects of drainage and microtopography (which may vary less predictably with latitude than elevation) on species distribution. The black spruce results suggest that a 1000-m increase in elevation is roughly comparable with a 6° increase in latitude.

Journal

Tree PhysiologyOxford University Press

Published: Jun 1, 2003

Keywords: boreal chlorophyll Picea spectral reflectance stress subarctic treeline

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off