Access the full text.
Sign up today, get DeepDyve free for 14 days.
P. Ciarlet (2002)
The finite element method for elliptic problems, 40
Zhiming Chen, Jianchao Feng (2004)
An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problemsMath. Comput., 73
R. Nochetto, K. Siebert, A. Veeser (2009)
Theory of adaptive finite element methods: An introduction
A. Bonito, R. Nochetto (2010)
Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin MethodSIAM J. Numer. Anal., 48
P. Bassanini, A. Elcrat (1997)
Elliptic Partial Differential Equations of Second Order
L. Diening, C. Kreuzer (2008)
Linear Convergence of an Adaptive Finite Element Method for the p-Laplacian EquationSIAM J. Numer. Anal., 46
O. Zienkiewicz, J. Zhu (1987)
A simple error estimator and adaptive procedure for practical engineerng analysisInternational Journal for Numerical Methods in Engineering, 24
Mirosław Krzyżański (1971)
Partial differential equations of second order
M. Ainsworth, J. Oden (2000)
A Posteriori Error Estimation in Finite Element Analysis
L. Scott, Shangyou Zhang (2010)
FINITE ELEMENT INTERPOLATION OF NONSMOOTH FUNCTIONS
C. Carstensen, R. Verfürth (1999)
Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element MethodsSIAM Journal on Numerical Analysis, 36
C. Traxler (1997)
An algorithm for adaptive mesh refinement inn dimensionsComputing, 59
R. Verfürth (1994)
A posteriori error estimation and adaptive mesh-refinement techniquesJournal of Computational and Applied Mathematics, 50
I. Babuska, A. Miller (1987)
A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimatorApplied Mechanics and Engineering, 61
D. Braess, J. Schöberl (2007)
Equilibrated residual error estimator for edge elementsMath. Comput., 77
L. Ridgway, Scott And, Shangyou Zhang (1990)
Finite element interpolation of nonsmooth functions satisfying boundary conditionsMathematics of Computation, 54
R. Stevenson (2007)
Optimality of a Standard Adaptive Finite Element MethodFoundations of Computational Mathematics, 7
P. Binev, W. Dahmen, R. DeVore, P. Petrushev (2002)
Approximation Classes for Adaptive MethodsSerdica. Mathematical Journal, 28
S. Prudhomme, F. Nobile, L. Chamoin, J. Oden (2004)
Analysis of a subdomain‐based error estimator for finite element approximations of elliptic problemsNumerical Methods for Partial Differential Equations, 20
T. Strouboulis, Lin Zhang, D. Wang, I. Babuska (2006)
A posteriori error estimation for generalized finite element methodsComputer Methods in Applied Mechanics and Engineering, 195
E. Bänsch (1991)
Local mesh refinement in 2 and 3 dimensionsIMPACT Comput. Sci. Eng., 3
C. Kreuzer, K. Siebert (2011)
Decay rates of adaptive finite elements with Dörfler markingNumerische Mathematik, 117
A. Veeser (2002)
Convergent adaptive finite elements for the nonlinear LaplacianNumerische Mathematik, 92
C. Carstensen (2003)
All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliableMath. Comput., 73
P. Morin, R. Nochetto, K. Siebert (2002)
Convergence of Adaptive Finite Element MethodsSIAM Rev., 44
Igor Kossaczký (1994)
A recursive approach to local mesh refinement in two and three dimensionsJournal of Computational and Applied Mathematics, 55
N. Parés, P. Díez, A. Huerta (2006)
Subdomain-based flux-free a posteriori error estimatorsComputer Methods in Applied Mechanics and Engineering, 195
W. Dörfler (1996)
A convergent adaptive algorithm for Poisson's equationSIAM Journal on Numerical Analysis, 33
K. Mekchay, R. Nochetto (2005)
Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEsSIAM J. Numer. Anal., 43
P. Morin, K. Siebert, A. Veeser (2008)
A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTSMathematical Models and Methods in Applied Sciences, 18
P. Morin, R. Nochetto, K. Siebert (2000)
Data Oscillation and Convergence of Adaptive FEMSIAM J. Numer. Anal., 38
R. Bank, Jinchao Xu (2003)
Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with SuperconvergenceSIAM J. Numer. Anal., 41
I. Babuska, T. Strouboulis (2001)
The finite element method and its reliability
C. Carstensen, S. Funken (1999)
Fully Reliable Localized Error Control in the FEMSIAM J. Sci. Comput., 21
Alan WEISERAbstract (1985)
Some a posteriori error estimators for elliptic partial differential equationsMathematics of Computation, 44
A. Cohen, R. DeVore, R. Nochetto (2012)
Convergence Rates of AFEM with H−1 DataFoundations of Computational Mathematics, 12
R. Bank, Jinchao Xu (2003)
Asymptotically Exact A Posteriori Error Estimators, Part II: General Unstructured GridsSIAM J. Numer. Anal., 41
G. Kunert, R. Verfürth (2000)
Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshesNumerische Mathematik, 86
R. Rodríguez (1994)
Some remarks on Zienkiewicz‐Zhu estimatorNumerical Methods for Partial Differential Equations, 10
P. Binev, W. Dahmen, R. DeVore (2004)
Adaptive Finite Element Methods with convergence ratesNumerische Mathematik, 97
P. Morin, R. Nochetto, K. Siebert (2003)
Local problems on stars: A posteriori error estimators, convergence, and performanceMath. Comput., 72
R. Stevenson (2008)
The completion of locally refined simplicial partitions created by bisectionMath. Comput., 77
A. Schmidt, K. Siebert (2005)
Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA, 42
F. Bornemann, B. Erdmann, R. Kornhuber (1996)
A posteriori error estimates for elliptic problems in two and three space dimensionsSIAM Journal on Numerical Analysis, 33
W. Mitchell (1989)
A comparison of adaptive refinement techniques for elliptic problemsACM Trans. Math. Softw., 15
J. Maubach, Finite Barker, Orlando, R. Bank, Siam Welfert (2017)
Local bisection refinement for $n$-simplicial grids generated by reflection
K. Siebert (2011)
A convergence proof for adaptive finite elements without lower boundIma Journal of Numerical Analysis, 31
J. Cascón, C. Kreuzer, R. Nochetto, K. Siebert (2008)
Quasi-Optimal Convergence Rate for an Adaptive Finite Element MethodSIAM J. Numer. Anal., 46
We examine adaptive finite element methods (AFEMs) with any polynomial degree satisfying rather general assumptions on the a posteriori error estimators. We show that several nonresidual estimators satisfy these assumptions. We design an AFEM with single Drfler marking for the sum of error estimator and oscillation, prove a contraction property for the so-called total error, namely the scaled sum of energy error and oscillation, and derive quasioptimal decay rates for the total error. We also re-examine the definition and role of oscillation in the approximation class.
IMA Journal of Numerical Analysis – Oxford University Press
Published: Jan 28, 2012
Keywords: error reduction convergence optimal cardinality adaptive algorithm
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.