“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Preliminary analysis of the genetic basis for vancomycin resistance in Staphylococcus aureus strain Mu50

Abstract Glycopeptides, such as vancomycin, are frequently the antibiotics of choice for treatment of infections caused by the now common methicillin-resistant Staphylococcus aureus (MRSA). Incidences of vancomycin resistance in S. aureus (VRSA) have been increasing worldwide for the last 5 years. Complex mechanisms producing changes in cell wall content and composition generate the VRSA phenotype, but the genetic basis of these changes has not yet been determined. To facilitate the genetic investigation, entire genome sequences of the archetypal VRSA (Mu50), and vancomycin-susceptible MRSA strains N315, EMRSA 16 and COL were compared. The in silico analysis revealed several loss-of-function mutations in Mu50, affecting important cell wall biosynthesis and intermediary metabolism genes, not previously reported. The new findings provide further evidence for the hypothesis that vancomycin resistance in Mu50 is due to fundamental changes, important to metabolic pathways that impinge on peptidoglycan biosynthesis. These observations will inform targeted experiments aimed at a complete understanding of the mechanism(s) of vancomycin resistance in S. aureus Mu50 and other VRSA strains. © 2002 The British Society for Antimicrobial Chemotherapy http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Antimicrobial Chemotherapy Oxford University Press

Preliminary analysis of the genetic basis for vancomycin resistance in Staphylococcus aureus strain Mu50

Abstract

Abstract Glycopeptides, such as vancomycin, are frequently the antibiotics of choice for treatment of infections caused by the now common methicillin-resistant Staphylococcus aureus (MRSA). Incidences of vancomycin resistance in S. aureus (VRSA) have been increasing worldwide for the last 5 years. Complex mechanisms producing changes in cell wall content and composition generate the VRSA phenotype, but the genetic basis of these changes has not yet been determined. To facilitate the genetic investigation, entire genome sequences of the archetypal VRSA (Mu50), and vancomycin-susceptible MRSA strains N315, EMRSA 16 and COL were compared. The in silico analysis revealed several loss-of-function mutations in Mu50, affecting important cell wall biosynthesis and intermediary metabolism genes, not previously reported. The new findings provide further evidence for the hypothesis that vancomycin resistance in Mu50 is due to fundamental changes, important to metabolic pathways that impinge on peptidoglycan biosynthesis. These observations will inform targeted experiments aimed at a complete understanding of the mechanism(s) of vancomycin resistance in S. aureus Mu50 and other VRSA strains. © 2002 The British Society for Antimicrobial Chemotherapy
Loading next page...
 
/lp/oxford-university-press/preliminary-analysis-of-the-genetic-basis-for-vancomycin-resistance-in-K8oEMwQ7iQ

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$40/month

Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$30/month
billed annually