Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Plant population and genotype effects override the effects of Epichloë endophyte species on growth and drought stress response of Achnatherum robustum plants in two natural grass populations

Plant population and genotype effects override the effects of Epichloë endophyte species on... AimsIn cool-season grasses, systemic and vertically transmitted Epichloë infections often provide a suite of benefits including increased growth, reproduction and competitive abilities. However, these effects of Epichloë endophytes on their hosts often depend upon host and endophyte genotype and environmental factors.MethodsAchnatherum robustum (sleepygrass) harbors at least two Epichloë species within natural populations in the Southwest USA. We tested the effects of endophyte infection and species, host population and plant genotype (by experimentally removing the endophyte), and soil moisture (a key limiting factor) on growth and drought stress response of infected A. robustum plants from two populations (Weed and Cloudcroft) in the Sacremento Mountains of New Mexico, USA).Important FindingsAlthough the two populations harbor distinct Epichloë species each with very different chemoprofiles, neither endophyte status (infected vs. uninfected) nor endophyte species affected most growth parameters at 8 or 25 weeks of the experiment, except for leaf length. In high water treatment, infected plants from the Weed population had longer leaf length compared with uninfected plants. In contrast, the population of origin affected all growth parameters, including plant height, leaf number, length and width, tiller number and shoot and root biomass, as well as wilting time. Grasses from the Cloudcroft population generally showed greater growth than grasses from the Weed population. Endophyte infection did affect wilting time, with infection in the Weed population generally reducing time to wilting under low and high water, whereas infection in the Cloudcroft population reduced time to wilting only under high water conditions. Our results suggest that plant population and their associated plant genotypes may play a much larger role in endophyte–host grass interactions in varying environments than previously thought. Asexual Epichloë species may be compatible with only specific host genotypes within populations such that the phenotypic effects due to population may be greater than phenotypic changes influenced by variation in the endophyte. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Plant Ecology Oxford University Press

Plant population and genotype effects override the effects of Epichloë endophyte species on growth and drought stress response of Achnatherum robustum plants in two natural grass populations

Loading next page...
 
/lp/oxford-university-press/plant-population-and-genotype-effects-override-the-effects-of-epichlo-Fx2U70604X

References (51)

Publisher
Oxford University Press
Copyright
© The Author 2015. Published by Oxford University Press on behalf of the Institute of Botany, Chinese Academy of Sciences and the Botanical Society of China. All rights reserved. For permissions, please email: journals.permissions@oup.com
ISSN
1752-9921
eISSN
1752-993X
DOI
10.1093/jpe/rtv004
Publisher site
See Article on Publisher Site

Abstract

AimsIn cool-season grasses, systemic and vertically transmitted Epichloë infections often provide a suite of benefits including increased growth, reproduction and competitive abilities. However, these effects of Epichloë endophytes on their hosts often depend upon host and endophyte genotype and environmental factors.MethodsAchnatherum robustum (sleepygrass) harbors at least two Epichloë species within natural populations in the Southwest USA. We tested the effects of endophyte infection and species, host population and plant genotype (by experimentally removing the endophyte), and soil moisture (a key limiting factor) on growth and drought stress response of infected A. robustum plants from two populations (Weed and Cloudcroft) in the Sacremento Mountains of New Mexico, USA).Important FindingsAlthough the two populations harbor distinct Epichloë species each with very different chemoprofiles, neither endophyte status (infected vs. uninfected) nor endophyte species affected most growth parameters at 8 or 25 weeks of the experiment, except for leaf length. In high water treatment, infected plants from the Weed population had longer leaf length compared with uninfected plants. In contrast, the population of origin affected all growth parameters, including plant height, leaf number, length and width, tiller number and shoot and root biomass, as well as wilting time. Grasses from the Cloudcroft population generally showed greater growth than grasses from the Weed population. Endophyte infection did affect wilting time, with infection in the Weed population generally reducing time to wilting under low and high water, whereas infection in the Cloudcroft population reduced time to wilting only under high water conditions. Our results suggest that plant population and their associated plant genotypes may play a much larger role in endophyte–host grass interactions in varying environments than previously thought. Asexual Epichloë species may be compatible with only specific host genotypes within populations such that the phenotypic effects due to population may be greater than phenotypic changes influenced by variation in the endophyte.

Journal

Journal of Plant EcologyOxford University Press

Published: Dec 22, 2015

There are no references for this article.