Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Oxidation of eugenol to form DNA adducts and 8-hydroxy-2'-deoxyguanosine: role of quinone methide derivative in DNA adduct formation.

Oxidation of eugenol to form DNA adducts and 8-hydroxy-2'-deoxyguanosine: role of quinone methide... We have investigated the activation of eugenol to form DNA adducts and oxidative base damage. Treatment of myeloperoxidase containing HL-60 cells with eugenol, produced a dose-dependent formation of three DNA adducts as detected with P1-enhanced 32P-post-labeling. Incubation of HL-60 cells with the combination of 100 microM eugenol and 100 microM H2O2 potentiated the levels of DNA adduct in HL-60 cells by 14-fold, which suggests peroxidase activation in adduct formation. In vitro activation of eugenol with either horseradish peroxidase or myeloperoxidase and H2O2 produced three DNA adducts that were inhibited by the addition of either ascorbic acid or glutathione, by 66 and 90%, respectively. The DNA adducts formed in HL-60 cells treated with eugenol were the same as those formed by in vitro peroxidase activation. In addition to adduct formation, peroxidase activation of eugenol produced a 2- to 3-fold increase in the level of oxidative base damage. Eugenol quinone methide was prepared by Ag(I)oxide oxidation of eugenol. Peroxidase activation of eugenol gave a product that had the same UV spectrum as eugenol quinone methide, which suggests that it was one of the products. Reaction of eugenol quinone methide with either DNA or deoxyguanosine-3'-phosphate produced two principal adducts (2 and 4). When DNA adduct 2 formed by incubation of eugenol quinone methide with deoxyguanosine-3'-phosphate was compared with DNA 2 adduct formed in HL-60 cells treated with eugenol results demonstrated that they were the same. This suggests that eugenol quinone methide is one of the reactive intermediates leading to DNA adduct formation in cells. Activation of eugenol with 10 microM copper sulfate resulted in the production of one principal (2) and several minor adducts. DNA adduct 2 formed by activation of eugenol with copper sulfate was the same as DNA adduct 2 formed by either peroxidase activation of eugenol or by reactions with eugenol quinone methide, which indicates that the reactive intermediates generated by these activation systems were similar. Copper sulfate produced a 95-fold increase in the level of oxidative base damage, which was significantly inhibited by the addition of either bathocuproinedisulphonic acid or catalase. The formation of oxidative base damage was consistent with a Fenton reaction mechanism. Our results demonstrate that eugenol can be activated to form both DNA adducts and oxidative base damage. We propose that the formation of this DNA damage may contribute to the observed toxic properties of eugenol. « Previous | Next Article » Table of Contents This Article Carcinogenesis (1998) 19 (3): 437-443. doi: 10.1093/carcin/19.3.437 » Abstract Free Full Text (PDF) Free Services Article metrics Alert me when cited Alert me if corrected Find similar articles Similar articles in Web of Science Similar articles in PubMed Add to my archive Download citation Request Permissions Citing Articles Load citing article information Citing articles via CrossRef Citing articles via Scopus Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Bodell, W. J. Articles by Pongracz, K. Search for related content PubMed PubMed citation Articles by Bodell, W. J. Articles by Ye, Q. Articles by Pathak, D. N. Articles by Pongracz, K. Related Content Load related web page information Share Email this article CiteULike Delicious Facebook Google+ Mendeley Twitter What's this? Search this journal: Advanced » Current Issue November 2015 36 (11) Alert me to new issues The Journal About this journal Rights & Permissions Dispatch date of the next issue This journal is a member of the Committee on Publication Ethics (COPE) We are mobile – find out more Journals Career Network Impact factor: 5.334 5-Yr impact factor: 5.698 Editor-in-Chief Dr Curtis C Harris, USA View full editorial board For Authors Instructions to authors Online submission Submit Now! Self archiving policy Open access options for authors - visit Oxford Open This journal enables compliance with the NIH Public Access Policy Alerting Services Email table of contents Email Advance Access CiteTrack XML RSS feed Corporate Services Advertising sales Reprints Supplements var taxonomies = ("MED00710"); Most Most Read Apoptosis in cancer Modulation of E-cadherin expression by K-Ras; involvement of DNA methyltransferase-3b Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead Tumor progression and metastasis Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability » View all Most Read articles Most Cited Oxyradicals and DNA damage Sensing and repairing DNA double-strand breaks Functional role of estrogen metabolism in target cells: review and perspectives Apoptosis in cancer Nucleotide excision repair and human syndromes » View all Most Cited articles Disclaimer: Please note that abstracts for content published before 1996 were created through digital scanning and may therefore not exactly replicate the text of the original print issues. All efforts have been made to ensure accuracy, but the Publisher will not be held responsible for any remaining inaccuracies. If you require any further clarification, please contact our Customer Services Department. Online ISSN 1460-2180 - Print ISSN 0143-3334 Copyright © 2015 Oxford University Press Oxford Journals Oxford University Press Site Map Privacy Policy Cookie Policy Legal Notices Frequently Asked Questions Other Oxford University Press sites: Oxford University Press Oxford Journals China Oxford Journals Japan Academic & Professional books Children's & Schools Books Dictionaries & Reference Dictionary of National Biography Digital Reference English Language Teaching Higher Education Textbooks International Education Unit Law Medicine Music Online Products & Publishing Oxford Bibliographies Online Oxford Dictionaries Online Oxford English Dictionary Oxford Language Dictionaries Online Oxford Scholarship Online Reference Rights and Permissions Resources for Retailers & Wholesalers Resources for the Healthcare Industry Very Short Introductions World's Classics function fnc_onDomLoaded() { var query_context = getQueryContext(); PF_initOIUnderbar(query_context,":QS:default","","JRN"); PF_insertOIUnderbar(0); }; if (window.addEventListener) { window.addEventListener('load', fnc_onDomLoaded, false); } else if (window.attachEvent) { window.attachEvent('onload', fnc_onDomLoaded); } var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-189672-16"); pageTracker._setDomainName(".oxfordjournals.org"); pageTracker._trackPageview(); } catch(err) {} http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Carcinogenesis Oxford University Press

Oxidation of eugenol to form DNA adducts and 8-hydroxy-2'-deoxyguanosine: role of quinone methide derivative in DNA adduct formation.

Loading next page...
 
/lp/oxford-university-press/oxidation-of-eugenol-to-form-dna-adducts-and-8-hydroxy-2-YsyQ6rfHWh

References (44)

Publisher
Oxford University Press
Copyright
Copyright © 2015 Oxford University Press
ISSN
0143-3334
eISSN
1460-2180
DOI
10.1093/carcin/19.3.437
Publisher site
See Article on Publisher Site

Abstract

We have investigated the activation of eugenol to form DNA adducts and oxidative base damage. Treatment of myeloperoxidase containing HL-60 cells with eugenol, produced a dose-dependent formation of three DNA adducts as detected with P1-enhanced 32P-post-labeling. Incubation of HL-60 cells with the combination of 100 microM eugenol and 100 microM H2O2 potentiated the levels of DNA adduct in HL-60 cells by 14-fold, which suggests peroxidase activation in adduct formation. In vitro activation of eugenol with either horseradish peroxidase or myeloperoxidase and H2O2 produced three DNA adducts that were inhibited by the addition of either ascorbic acid or glutathione, by 66 and 90%, respectively. The DNA adducts formed in HL-60 cells treated with eugenol were the same as those formed by in vitro peroxidase activation. In addition to adduct formation, peroxidase activation of eugenol produced a 2- to 3-fold increase in the level of oxidative base damage. Eugenol quinone methide was prepared by Ag(I)oxide oxidation of eugenol. Peroxidase activation of eugenol gave a product that had the same UV spectrum as eugenol quinone methide, which suggests that it was one of the products. Reaction of eugenol quinone methide with either DNA or deoxyguanosine-3'-phosphate produced two principal adducts (2 and 4). When DNA adduct 2 formed by incubation of eugenol quinone methide with deoxyguanosine-3'-phosphate was compared with DNA 2 adduct formed in HL-60 cells treated with eugenol results demonstrated that they were the same. This suggests that eugenol quinone methide is one of the reactive intermediates leading to DNA adduct formation in cells. Activation of eugenol with 10 microM copper sulfate resulted in the production of one principal (2) and several minor adducts. DNA adduct 2 formed by activation of eugenol with copper sulfate was the same as DNA adduct 2 formed by either peroxidase activation of eugenol or by reactions with eugenol quinone methide, which indicates that the reactive intermediates generated by these activation systems were similar. Copper sulfate produced a 95-fold increase in the level of oxidative base damage, which was significantly inhibited by the addition of either bathocuproinedisulphonic acid or catalase. The formation of oxidative base damage was consistent with a Fenton reaction mechanism. Our results demonstrate that eugenol can be activated to form both DNA adducts and oxidative base damage. We propose that the formation of this DNA damage may contribute to the observed toxic properties of eugenol. « Previous | Next Article » Table of Contents This Article Carcinogenesis (1998) 19 (3): 437-443. doi: 10.1093/carcin/19.3.437 » Abstract Free Full Text (PDF) Free Services Article metrics Alert me when cited Alert me if corrected Find similar articles Similar articles in Web of Science Similar articles in PubMed Add to my archive Download citation Request Permissions Citing Articles Load citing article information Citing articles via CrossRef Citing articles via Scopus Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Bodell, W. J. Articles by Pongracz, K. Search for related content PubMed PubMed citation Articles by Bodell, W. J. Articles by Ye, Q. Articles by Pathak, D. N. Articles by Pongracz, K. Related Content Load related web page information Share Email this article CiteULike Delicious Facebook Google+ Mendeley Twitter What's this? Search this journal: Advanced » Current Issue November 2015 36 (11) Alert me to new issues The Journal About this journal Rights & Permissions Dispatch date of the next issue This journal is a member of the Committee on Publication Ethics (COPE) We are mobile – find out more Journals Career Network Impact factor: 5.334 5-Yr impact factor: 5.698 Editor-in-Chief Dr Curtis C Harris, USA View full editorial board For Authors Instructions to authors Online submission Submit Now! Self archiving policy Open access options for authors - visit Oxford Open This journal enables compliance with the NIH Public Access Policy Alerting Services Email table of contents Email Advance Access CiteTrack XML RSS feed Corporate Services Advertising sales Reprints Supplements var taxonomies = ("MED00710"); Most Most Read Apoptosis in cancer Modulation of E-cadherin expression by K-Ras; involvement of DNA methyltransferase-3b Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead Tumor progression and metastasis Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability » View all Most Read articles Most Cited Oxyradicals and DNA damage Sensing and repairing DNA double-strand breaks Functional role of estrogen metabolism in target cells: review and perspectives Apoptosis in cancer Nucleotide excision repair and human syndromes » View all Most Cited articles Disclaimer: Please note that abstracts for content published before 1996 were created through digital scanning and may therefore not exactly replicate the text of the original print issues. All efforts have been made to ensure accuracy, but the Publisher will not be held responsible for any remaining inaccuracies. If you require any further clarification, please contact our Customer Services Department. Online ISSN 1460-2180 - Print ISSN 0143-3334 Copyright © 2015 Oxford University Press Oxford Journals Oxford University Press Site Map Privacy Policy Cookie Policy Legal Notices Frequently Asked Questions Other Oxford University Press sites: Oxford University Press Oxford Journals China Oxford Journals Japan Academic & Professional books Children's & Schools Books Dictionaries & Reference Dictionary of National Biography Digital Reference English Language Teaching Higher Education Textbooks International Education Unit Law Medicine Music Online Products & Publishing Oxford Bibliographies Online Oxford Dictionaries Online Oxford English Dictionary Oxford Language Dictionaries Online Oxford Scholarship Online Reference Rights and Permissions Resources for Retailers & Wholesalers Resources for the Healthcare Industry Very Short Introductions World's Classics function fnc_onDomLoaded() { var query_context = getQueryContext(); PF_initOIUnderbar(query_context,":QS:default","","JRN"); PF_insertOIUnderbar(0); }; if (window.addEventListener) { window.addEventListener('load', fnc_onDomLoaded, false); } else if (window.attachEvent) { window.attachEvent('onload', fnc_onDomLoaded); } var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-189672-16"); pageTracker._setDomainName(".oxfordjournals.org"); pageTracker._trackPageview(); } catch(err) {}

Journal

CarcinogenesisOxford University Press

Published: Mar 1, 1998

There are no references for this article.