Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world

Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world The role of carbon (C) and nitrogen (N) storage by trees will be discussed in terms of uncoupling their growth from resource acquisition. There are profound differences between the physiology of C and N storage. C storage acts as a short-term, temporary buffer when photosynthesis cannot meet current sink demand and remobilization is sink driven. However, the majority of C allocated to non-structural carbohydrates such as starch is not reused so is in fact sequestered, not stored. In contrast, N storage is seasonally programmed, closely linked to tree phenology and operates at temporal scales of months to years, with remobilization being source driven. We examine the ecological significance of N storage and remobilization in terms of regulating plant N use efficiency, allowing trees to uncouple seasonal growth from N uptake by roots and allowing recovery from disturbances such as browsing damage. We also briefly consider the importance of N storage and remobilization in regulating how trees will likely respond to rising atmospheric carbon dioxide concentrations. Most studies of N storage and remobilization have been restricted to small trees growing in a controlled environment where 15N can be used easily as a tracer for mineral N. We highlight the need to describe and quantify these processes for adult trees in situ where most root N uptake occurs via ectomycorrhizal partners, an approach that now appears feasible for deciduous trees through quantification of the flux of remobilized N in their xylem. This opens new possibilities for studying interactions between N and C allocation in trees and associated mycorrhizal partners, which are likely to be crucial in regulating the response of trees to many aspects of global environmental change. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tree Physiology Oxford University Press

Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world

Tree Physiology, Volume 30 (9) – Sep 15, 2010

Loading next page...
 
/lp/oxford-university-press/nitrogen-storage-and-remobilization-by-trees-ecophysiological-bws7tNZF46
Publisher
Oxford University Press
Copyright
The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
Subject
Invited Review
ISSN
0829-318X
eISSN
1758-4469
D.O.I.
10.1093/treephys/tpq042
Publisher site
See Article on Publisher Site

Abstract

The role of carbon (C) and nitrogen (N) storage by trees will be discussed in terms of uncoupling their growth from resource acquisition. There are profound differences between the physiology of C and N storage. C storage acts as a short-term, temporary buffer when photosynthesis cannot meet current sink demand and remobilization is sink driven. However, the majority of C allocated to non-structural carbohydrates such as starch is not reused so is in fact sequestered, not stored. In contrast, N storage is seasonally programmed, closely linked to tree phenology and operates at temporal scales of months to years, with remobilization being source driven. We examine the ecological significance of N storage and remobilization in terms of regulating plant N use efficiency, allowing trees to uncouple seasonal growth from N uptake by roots and allowing recovery from disturbances such as browsing damage. We also briefly consider the importance of N storage and remobilization in regulating how trees will likely respond to rising atmospheric carbon dioxide concentrations. Most studies of N storage and remobilization have been restricted to small trees growing in a controlled environment where 15N can be used easily as a tracer for mineral N. We highlight the need to describe and quantify these processes for adult trees in situ where most root N uptake occurs via ectomycorrhizal partners, an approach that now appears feasible for deciduous trees through quantification of the flux of remobilized N in their xylem. This opens new possibilities for studying interactions between N and C allocation in trees and associated mycorrhizal partners, which are likely to be crucial in regulating the response of trees to many aspects of global environmental change.

Journal

Tree PhysiologyOxford University Press

Published: Sep 15, 2010

Keywords: Keywords carbon internal cycling of nitrogen mycorrhizal fungi nitrogen uptake non-structural carbohydrates phenology RuBisCo sequestration

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off