Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Needles and pins: acicular crystalline periostracal calcification in venerid bivalves (Bivalvia: Veneridae)

Needles and pins: acicular crystalline periostracal calcification in venerid bivalves (Bivalvia:... A scanning electron microscope study of the periostracum of 50 species of venerid bivalves revealed that periostracal calcification in the form of aragonitic needles and shorter pins is widespread within the family. Together with organic and sediment coatings that are found in some species, these needles form an integral part of the functional shell. Visible as a white crust on the outside of shells, long slender needles (up to 400 m long and 1 m wide) without adherent material are seen in species of Tivela and Lioconcha and in Gomphina undulosa. Other venerids including Pitar species, Mysia undata and Compsomyax subdiaphana have short pins, capped with a fibrous organic matrix and significant coatings of sediment. Callocardia hungerfordi and Clementia papyracea have very thick sediment coatings underlain by short pins, while Gafrarium and Circe species have short pins with a thin, robust, organic coating and little particulate material. Finally, there are species, including Venus verrucosa, Chione elevata and Mercenaria mercenaria, where minute, <1 m long pins also underpin a thin organic coating. Details of formation were studied in Tivela lamyi and Lioconcha ornata, where the needles are elongate hexagonal crystals of aragonite enveloped by an organic sheath, which grow at their proximal ends from within the periostracum, connected to the outer mantle epithelium via narrow channels. Growth of needles ceases following the onset of shell calcification. The distribution of the periostracal structures was examined in relation to a published molecular phylogeny that recognized two major clades within the family. Larger needles and pins are confined to the clade that includes subfamilies Pitarinae, Gouldinae, Meretricinae and Petricolinae, while submicron-sized pins are found only in the Venerinae and Chioninae of the second clade. Calcified periostracal structures appear to be absent in Tapetinae and Dosiniinae. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Molluscan Studies Oxford University Press

Needles and pins: acicular crystalline periostracal calcification in venerid bivalves (Bivalvia: Veneridae)

Loading next page...
 
/lp/oxford-university-press/needles-and-pins-acicular-crystalline-periostracal-calcification-in-seaqw4wyTM

References (48)

Publisher
Oxford University Press
Copyright
© Published by Oxford University Press.
Subject
Research Papers
ISSN
0260-1230
eISSN
1464-3766
DOI
10.1093/mollus/eyp054
Publisher site
See Article on Publisher Site

Abstract

A scanning electron microscope study of the periostracum of 50 species of venerid bivalves revealed that periostracal calcification in the form of aragonitic needles and shorter pins is widespread within the family. Together with organic and sediment coatings that are found in some species, these needles form an integral part of the functional shell. Visible as a white crust on the outside of shells, long slender needles (up to 400 m long and 1 m wide) without adherent material are seen in species of Tivela and Lioconcha and in Gomphina undulosa. Other venerids including Pitar species, Mysia undata and Compsomyax subdiaphana have short pins, capped with a fibrous organic matrix and significant coatings of sediment. Callocardia hungerfordi and Clementia papyracea have very thick sediment coatings underlain by short pins, while Gafrarium and Circe species have short pins with a thin, robust, organic coating and little particulate material. Finally, there are species, including Venus verrucosa, Chione elevata and Mercenaria mercenaria, where minute, <1 m long pins also underpin a thin organic coating. Details of formation were studied in Tivela lamyi and Lioconcha ornata, where the needles are elongate hexagonal crystals of aragonite enveloped by an organic sheath, which grow at their proximal ends from within the periostracum, connected to the outer mantle epithelium via narrow channels. Growth of needles ceases following the onset of shell calcification. The distribution of the periostracal structures was examined in relation to a published molecular phylogeny that recognized two major clades within the family. Larger needles and pins are confined to the clade that includes subfamilies Pitarinae, Gouldinae, Meretricinae and Petricolinae, while submicron-sized pins are found only in the Venerinae and Chioninae of the second clade. Calcified periostracal structures appear to be absent in Tapetinae and Dosiniinae.

Journal

Journal of Molluscan StudiesOxford University Press

Published: May 12, 2010

There are no references for this article.