Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Mycobacterium tuberculosis: success through dormancy

Mycobacterium tuberculosis: success through dormancy AbstractTuberculosis (TB) remains a major health threat, killing nearly 2 million individuals around this globe, annually. The only vaccine, developed almost a century ago, provides limited protection only during childhood. After decades without the introduction of new antibiotics, several candidates are currently undergoing clinical investigation. Curing TB requires prolonged combination of chemotherapy with several drugs. Moreover, monitoring the success of therapy is questionable owing to the lack of reliable biomarkers. To substantially improve the situation, a detailed understanding of the cross-talk between human host and the pathogen Mycobacterium tuberculosis (Mtb) is vital. Principally, the enormous success of Mtb is based on three capacities: first, reprogramming of macrophages after primary infection/phagocytosis to prevent its own destruction; second, initiating the formation of well-organized granulomas, comprising different immune cells to create a confined environment for the host–pathogen standoff; third, the capability to shut down its own central metabolism, terminate replication, and thereby transit into a stage of dormancy rendering itself extremely resistant to host defense and drug treatment. Here, we review the molecular mechanisms underlying these processes, draw conclusions in a working model of mycobacterial dormancy, and highlight gaps in our understanding to be addressed in future research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png FEMS Microbiology Reviews Oxford University Press

Mycobacterium tuberculosis: success through dormancy

Loading next page...
 
/lp/oxford-university-press/mycobacterium-tuberculosis-success-through-dormancy-nFoI7Wz4bw

References (181)

Publisher
Oxford University Press
Copyright
© 2012 Federation of European Microbiological Societies.
ISSN
0168-6445
eISSN
1574-6976
DOI
10.1111/j.1574-6976.2012.00331.x
pmid
22320122
Publisher site
See Article on Publisher Site

Abstract

AbstractTuberculosis (TB) remains a major health threat, killing nearly 2 million individuals around this globe, annually. The only vaccine, developed almost a century ago, provides limited protection only during childhood. After decades without the introduction of new antibiotics, several candidates are currently undergoing clinical investigation. Curing TB requires prolonged combination of chemotherapy with several drugs. Moreover, monitoring the success of therapy is questionable owing to the lack of reliable biomarkers. To substantially improve the situation, a detailed understanding of the cross-talk between human host and the pathogen Mycobacterium tuberculosis (Mtb) is vital. Principally, the enormous success of Mtb is based on three capacities: first, reprogramming of macrophages after primary infection/phagocytosis to prevent its own destruction; second, initiating the formation of well-organized granulomas, comprising different immune cells to create a confined environment for the host–pathogen standoff; third, the capability to shut down its own central metabolism, terminate replication, and thereby transit into a stage of dormancy rendering itself extremely resistant to host defense and drug treatment. Here, we review the molecular mechanisms underlying these processes, draw conclusions in a working model of mycobacterial dormancy, and highlight gaps in our understanding to be addressed in future research.

Journal

FEMS Microbiology ReviewsOxford University Press

Published: May 2, 2012

There are no references for this article.