Method for milk oligosaccharide profiling by 2-aminobenzamide labeling and hydrophilic interaction chromatography

Method for milk oligosaccharide profiling by 2-aminobenzamide labeling and hydrophilic... Although the properties of milk oligosaccharides have been of scientific interest for many years, their structural diversity presents a challenging analytical task. In the quest for a simple and robust technology to characterize the different oligosaccharides present in milk, we developed an analytical scheme based on their fluorescent labeling, pre-fractionation by weak anionic exchange chromatography and separation by hydrophilic interaction liquid chromatography (HILIC)-high performance liquid chromatography (HPLC). HILIC relies on the hydrophilic potential of the molecule, which accounts for differences in properties such as molecular volume, lipophilic surface area, charge, composition, structure, linkage and oligosaccharide branching. The robustness of the methodology has been demonstrated using bovine colostrum oligosaccharides as a case study. Structural assignments for 37 free glycans, including 20 sialylated species, were obtained by a combination of HILIC-HPLC, exoglycosidase digestion and offline negative-ion mode mass spectrometry (MS)/MS. Parameters obtained for each glycan, including linkages, enzymatic digestion products and glucose unit values, will be added to GlycoBase, a public access database (http://glycobase.nibrt.ie/glycobase.html). This approach provides a basis for the analysis of free milk oligosaccharides in a fast and sensitive manner and could be adapted for an automated technology platform amenable to diverse environments. Indeed, our approach, in conjunction with bacterial-binding assays, can provide a better understanding of the structural elements required for biological activity of free milk oligosaccharides and could serve as a scientific basis for the selection of such bioactives from various food sources. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Glycobiology Oxford University Press

Method for milk oligosaccharide profiling by 2-aminobenzamide labeling and hydrophilic interaction chromatography

Loading next page...
 
/lp/oxford-university-press/method-for-milk-oligosaccharide-profiling-by-2-aminobenzamide-labeling-qSeTSRrDVV
Publisher
Oxford University Press
Copyright
The Author 2011. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissionsoup.com
Subject
ORIGINAL ARTICLES
ISSN
0959-6658
eISSN
1460-2423
DOI
10.1093/glycob/cwr067
pmid
21566017
Publisher site
See Article on Publisher Site

Abstract

Although the properties of milk oligosaccharides have been of scientific interest for many years, their structural diversity presents a challenging analytical task. In the quest for a simple and robust technology to characterize the different oligosaccharides present in milk, we developed an analytical scheme based on their fluorescent labeling, pre-fractionation by weak anionic exchange chromatography and separation by hydrophilic interaction liquid chromatography (HILIC)-high performance liquid chromatography (HPLC). HILIC relies on the hydrophilic potential of the molecule, which accounts for differences in properties such as molecular volume, lipophilic surface area, charge, composition, structure, linkage and oligosaccharide branching. The robustness of the methodology has been demonstrated using bovine colostrum oligosaccharides as a case study. Structural assignments for 37 free glycans, including 20 sialylated species, were obtained by a combination of HILIC-HPLC, exoglycosidase digestion and offline negative-ion mode mass spectrometry (MS)/MS. Parameters obtained for each glycan, including linkages, enzymatic digestion products and glucose unit values, will be added to GlycoBase, a public access database (http://glycobase.nibrt.ie/glycobase.html). This approach provides a basis for the analysis of free milk oligosaccharides in a fast and sensitive manner and could be adapted for an automated technology platform amenable to diverse environments. Indeed, our approach, in conjunction with bacterial-binding assays, can provide a better understanding of the structural elements required for biological activity of free milk oligosaccharides and could serve as a scientific basis for the selection of such bioactives from various food sources.

Journal

GlycobiologyOxford University Press

Published: Oct 12, 2011

Keywords: bovine colostrum HILIC milk oligosaccharides 2-aminobenzamide labeling

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off