Interference competition between coyotes and raccoons: a test of the mesopredator release hypothesis

Interference competition between coyotes and raccoons: a test of the mesopredator release hypothesis Some predator species appear to conform to the mesopredator release hypothesis (MRH), in which larger predators help limit populations of smaller predators. This hypothesis has been used to explain the possible relationship between coyotes, mesopredators, and resultant cascades involving nonpredators. However, relationships between coyotes and noncanid mesopredators are poorly understood, and predictions from the MRH have rarely been rigorously tested. We monitored sympatric raccoon and coyote populations to assess 2 predictions derived from the MRH: coyote predation is an important cause of mortality in raccoon populations or raccoons avoid areas used by coyotes. Between March 2000 and September 2001, we recorded 3553 locations for 27 radio-collared raccoons and 1393 locations for 13 coyotes captured on the Max McGraw Wildlife Foundation in Illinois, USA. No raccoon mortality from coyote predation was observed during the study, and raccoon survival was >0.7 each season. All raccoon 95% home ranges exhibited overlap with 95% coyote home ranges in each season. The mean proportion of raccoon locations within 95% coyote home ranges did not vary by sex but did vary by season. Raccoon overlap of coyote core areas varied considerably among individuals within seasons, ranging from 0% to 83%. However, 45% of raccoons had <10% overlap with coyote core areas, whereas only 14% of raccoons exhibited >50% overlap. Mean overlap with core areas did not vary by season or sex. For those raccoons with home ranges overlapping coyote core areas, mean proportion of observed raccoon locations within coyote core areas was generally greater than the mean proportion of random locations. Scent-station experiments failed to document raccoon avoidance of specific sites that had been marked with coyote urine. We did not find support for a mortality prediction or avoidance prediction to support MRH with regard to raccoons and coyotes. These results suggest that relationships among mammalian predators may not be simply dictated by body size, particularly for species outside the Canidae. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Behavioral Ecology Oxford University Press

Interference competition between coyotes and raccoons: a test of the mesopredator release hypothesis

Behavioral Ecology, Volume 18 (1) – Nov 28, 2006

Loading next page...
 
/lp/oxford-university-press/interference-competition-between-coyotes-and-raccoons-a-test-of-the-MhUkIK4p2d
Publisher
Oxford University Press
Copyright
2006 The Authors
ISSN
1045-2249
eISSN
1465-7279
DOI
10.1093/beheco/arl075
Publisher site
See Article on Publisher Site

Abstract

Some predator species appear to conform to the mesopredator release hypothesis (MRH), in which larger predators help limit populations of smaller predators. This hypothesis has been used to explain the possible relationship between coyotes, mesopredators, and resultant cascades involving nonpredators. However, relationships between coyotes and noncanid mesopredators are poorly understood, and predictions from the MRH have rarely been rigorously tested. We monitored sympatric raccoon and coyote populations to assess 2 predictions derived from the MRH: coyote predation is an important cause of mortality in raccoon populations or raccoons avoid areas used by coyotes. Between March 2000 and September 2001, we recorded 3553 locations for 27 radio-collared raccoons and 1393 locations for 13 coyotes captured on the Max McGraw Wildlife Foundation in Illinois, USA. No raccoon mortality from coyote predation was observed during the study, and raccoon survival was >0.7 each season. All raccoon 95% home ranges exhibited overlap with 95% coyote home ranges in each season. The mean proportion of raccoon locations within 95% coyote home ranges did not vary by sex but did vary by season. Raccoon overlap of coyote core areas varied considerably among individuals within seasons, ranging from 0% to 83%. However, 45% of raccoons had <10% overlap with coyote core areas, whereas only 14% of raccoons exhibited >50% overlap. Mean overlap with core areas did not vary by season or sex. For those raccoons with home ranges overlapping coyote core areas, mean proportion of observed raccoon locations within coyote core areas was generally greater than the mean proportion of random locations. Scent-station experiments failed to document raccoon avoidance of specific sites that had been marked with coyote urine. We did not find support for a mortality prediction or avoidance prediction to support MRH with regard to raccoons and coyotes. These results suggest that relationships among mammalian predators may not be simply dictated by body size, particularly for species outside the Canidae.

Journal

Behavioral EcologyOxford University Press

Published: Nov 28, 2006

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off