“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Identification of antigenic escape variants in an immunodominant epitope of hepatitis C virus

Numerous investigators have postulated that one mechanism by which hepatitis C virus (HCV) may evade the immune system is through the formation of escape mutants. This hypothesis is based largely on the observed mutability of the viral genome resulting in evolution of diverse quasispecies over the course of infection. That such diversification is a product of viral RNA polymerase infidelity, immune-driven selection or a combination of the two processes has not been addressed. We have examined sequence variability in a specific segment of HCV RNA encoding a known immunodominant region of the viral helicase, amino acids 358-375 of the non-structural 3 protein. Using sequence-specific oligonucleotide probe hybridization and automated DNA sequencing, we report a high frequency of mutations, essentially all of which result in amino acid replacements. To assess the biological impact of such mutations, corresponding chemically synthesized peptides were compared to wild-type peptide in T cell proliferation assays. We observed that a sizeable fraction of such peptides stimulated attenuated or negligible levels of proliferation by peripheral T cells from a chronically infected patient. This observation is consistent with expectations for immune-mediated selection of escape variants at the epitope level. We postulate that such a mechanism may be important in the immunopathogenesis of HCV infections. Key words : hepatitis, T cells, epitopes, immunopathogenesis, synthetic peptides http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Immunology Oxford University Press

Identification of antigenic escape variants in an immunodominant epitope of hepatitis C virus

Abstract

Numerous investigators have postulated that one mechanism by which hepatitis C virus (HCV) may evade the immune system is through the formation of escape mutants. This hypothesis is based largely on the observed mutability of the viral genome resulting in evolution of diverse quasispecies over the course of infection. That such diversification is a product of viral RNA polymerase infidelity, immune-driven selection or a combination of the two processes has not been addressed. We have examined sequence variability in a specific segment of HCV RNA encoding a known immunodominant region of the viral helicase, amino acids 358-375 of the non-structural 3 protein. Using sequence-specific oligonucleotide probe hybridization and automated DNA sequencing, we report a high frequency of mutations, essentially all of which result in amino acid replacements. To assess the biological impact of such mutations, corresponding chemically synthesized peptides were compared to wild-type peptide in T cell proliferation assays. We observed that a sizeable fraction of such peptides stimulated attenuated or negligible levels of proliferation by peripheral T cells from a chronically infected patient. This observation is consistent with expectations for immune-mediated selection of escape variants at the epitope level. We postulate that such a mechanism may be important in the immunopathogenesis of HCV infections. Key words : hepatitis, T cells, epitopes, immunopathogenesis, synthetic peptides
Loading next page...
 
/lp/oxford-university-press/identification-of-antigenic-escape-variants-in-an-immunodominant-RFIbFzWSU5

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$40/month

Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$30/month
billed annually