Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Genes directing flower development in Arabidopsis.

Genes directing flower development in Arabidopsis. Abstract We describe the effects of four recessive homeotic mutations that specifically disrupt the development of flowers in Arabidopsis thaliana. Each of the recessive mutations affects the outcome of organ development, but not the location of organ primordia. Homeotic transformations observed are as follows. In agamous-1, stamens to petals; in apetala2-1, sepals to leaves and petals to staminoid petals; in apetala3-1, petals to sepals and stamens to carpels; in pistillata-1, petals to sepals. In addition, two of these mutations (ap2-1 and pi-1) result in loss of organs, and ag-1 causes the cells that would ordinarily form the gynoecium to differentiate as a flower. Two of the mutations are temperature-sensitive. Temperature shift experiments indicate that the wild-type AP2 gene product acts at the time of primordium initiation; the AP3 product is active later. It seems that the wild-type alleles of these four genes allow cells to determine their place in the developing flower and thus to differentiate appropriately. We propose that these genes may be involved in setting up or responding to concentric, overlapping fields within the flower primordium. This content is only available as a PDF. © 1989 by American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Plant Cell Oxford University Press

Genes directing flower development in Arabidopsis.

The Plant Cell , Volume 1 (1) – Jan 1, 1989

Loading next page...
 
/lp/oxford-university-press/genes-directing-flower-development-in-arabidopsis-izGtMdsGcm

References (35)

Publisher
Oxford University Press
Copyright
Copyright © 2021 American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
DOI
10.1105/tpc.1.1.37
Publisher site
See Article on Publisher Site

Abstract

Abstract We describe the effects of four recessive homeotic mutations that specifically disrupt the development of flowers in Arabidopsis thaliana. Each of the recessive mutations affects the outcome of organ development, but not the location of organ primordia. Homeotic transformations observed are as follows. In agamous-1, stamens to petals; in apetala2-1, sepals to leaves and petals to staminoid petals; in apetala3-1, petals to sepals and stamens to carpels; in pistillata-1, petals to sepals. In addition, two of these mutations (ap2-1 and pi-1) result in loss of organs, and ag-1 causes the cells that would ordinarily form the gynoecium to differentiate as a flower. Two of the mutations are temperature-sensitive. Temperature shift experiments indicate that the wild-type AP2 gene product acts at the time of primordium initiation; the AP3 product is active later. It seems that the wild-type alleles of these four genes allow cells to determine their place in the developing flower and thus to differentiate appropriately. We propose that these genes may be involved in setting up or responding to concentric, overlapping fields within the flower primordium. This content is only available as a PDF. © 1989 by American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Journal

The Plant CellOxford University Press

Published: Jan 1, 1989

There are no references for this article.