Environmental factors as regulators and effectors of multistep carcinogenesis

Environmental factors as regulators and effectors of multistep carcinogenesis This review highlights current knowledge of environmental factors in carcinogenesis and their cellular targets. The hypothesis that environmental factors influence carcinogenesis is widely supported by both epidemiological and experimental studies. The fact that only a small fraction of cancers can be attributed to germline mutations in cancer-related genes further buttresses the importance of environmental factors in carcinogenesis. Furthermore, penetrance of germline mutations may be modified by either environmental or other genetic factors. Examples of environmental factors that have been associated with increased cancer risk in the human population include chemical and physical mutagens (e.g. cigarette smoke, heterocyclic amines, asbestos and UV irradiation), infection by certain viral or bacterial pathogens, and dietary non-genotoxic constituents (e.g. macro- and micronutrients). Among molecular targets of environmental influences on carcinogenesis are somatic mutation (genetic change) and aberrant DNA methylation (epigenetic change) at the genomic level and post-translational modifications at the protein level. At both levels, changes elicited affect either the stability or the activity of key regulatory proteins, including oncoproteins and tumor suppressor proteins. Together, via multiple genetic and epigenetic lesions, environmental factors modulate important changes in the pathway of cellular carcinogenesis. Key words CREB, cyclic AMP response element binding protein EGFR, epidermal growth factor receptor HBV, hepatitis B virus HCC, hepatocellular carcinoma HCV, hepatitis C virus HPV, human papilloma virus IGFR, insulin-like growth factor receptor MAPK, mitogen activated protein kinase NO, nitric oxide PKA, protein kinase A PKC, protein kinase C ROS, reactive oxygen species TFIIH, transcription factor IIH TPA, 12- O -tetradecanoylphorbol-13-acetate. © Oxford University Press « Previous | Next Article » Table of Contents This Article Carcinogenesis (1999) 20 (4): 519-527. doi: 10.1093/carcin/20.4.519 » Abstract Free Full Text (HTML) Free Full Text (PDF) Free Classifications Review Services Article metrics Alert me when cited Alert me if corrected Find similar articles Similar articles in Web of Science Similar articles in PubMed Add to my archive Download citation Request Permissions Citing Articles Load citing article information Citing articles via CrossRef Citing articles via Scopus Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Minamoto, T. Articles by Ronai, Z. Search for related content PubMed PubMed citation Articles by Minamoto, T. Articles by Mai, M. Articles by Ronai, Z. Related Content Load related web page information Share Email this article CiteULike Delicious Facebook Google+ Mendeley Twitter What's this? Search this journal: Advanced » Current Issue October 2015 36 (10) Alert me to new issues The Journal About this journal Rights & Permissions Dispatch date of the next issue This journal is a member of the Committee on Publication Ethics (COPE) We are mobile – find out more Journals Career Network Impact factor: 5.334 5-Yr impact factor: 5.698 Editor-in-Chief Dr Curtis C Harris, USA View full editorial board For Authors Instructions to authors Online submission Submit Now! Self archiving policy Open access options for authors - visit Oxford Open This journal enables compliance with the NIH Public Access Policy Alerting Services Email table of contents Email Advance Access CiteTrack XML RSS feed Corporate Services Advertising sales Reprints Supplements var taxonomies = ("MED00710"); Most Most Read Apoptosis in cancer Modulation of E-cadherin expression by K-Ras; involvement of DNA methyltransferase-3b Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead Tumor progression and metastasis Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability » View all Most Read articles Most Cited Oxyradicals and DNA damage Sensing and repairing DNA double-strand breaks Functional role of estrogen metabolism in target cells: review and perspectives Apoptosis in cancer Nucleotide excision repair and human syndromes » View all Most Cited articles Disclaimer: Please note that abstracts for content published before 1996 were created through digital scanning and may therefore not exactly replicate the text of the original print issues. All efforts have been made to ensure accuracy, but the Publisher will not be held responsible for any remaining inaccuracies. If you require any further clarification, please contact our Customer Services Department. Online ISSN 1460-2180 - Print ISSN 0143-3334 Copyright © 2015 Oxford University Press Oxford Journals Oxford University Press Site Map Privacy Policy Cookie Policy Legal Notices Frequently Asked Questions Other Oxford University Press sites: Oxford University Press Oxford Journals China Oxford Journals Japan Academic & Professional books Children's & Schools Books Dictionaries & Reference Dictionary of National Biography Digital Reference English Language Teaching Higher Education Textbooks International Education Unit Law Medicine Music Online Products & Publishing Oxford Bibliographies Online Oxford Dictionaries Online Oxford English Dictionary Oxford Language Dictionaries Online Oxford Scholarship Online Reference Rights and Permissions Resources for Retailers & Wholesalers Resources for the Healthcare Industry Very Short Introductions World's Classics function fnc_onDomLoaded() { var query_context = getQueryContext(); PF_initOIUnderbar(query_context,":QS:default","","JRN"); PF_insertOIUnderbar(0); }; if (window.addEventListener) { window.addEventListener('load', fnc_onDomLoaded, false); } else if (window.attachEvent) { window.attachEvent('onload', fnc_onDomLoaded); } var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-189672-16"); pageTracker._setDomainName(".oxfordjournals.org"); pageTracker._trackPageview(); } catch(err) {} http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Carcinogenesis Oxford University Press

Environmental factors as regulators and effectors of multistep carcinogenesis

Loading next page...
 
/lp/oxford-university-press/environmental-factors-as-regulators-and-effectors-of-multistep-E3HO8X7IUv
Publisher
Oxford University Press
Copyright
Copyright © 2015 Oxford University Press
ISSN
0143-3334
eISSN
1460-2180
D.O.I.
10.1093/carcin/20.4.519
Publisher site
See Article on Publisher Site

Abstract

This review highlights current knowledge of environmental factors in carcinogenesis and their cellular targets. The hypothesis that environmental factors influence carcinogenesis is widely supported by both epidemiological and experimental studies. The fact that only a small fraction of cancers can be attributed to germline mutations in cancer-related genes further buttresses the importance of environmental factors in carcinogenesis. Furthermore, penetrance of germline mutations may be modified by either environmental or other genetic factors. Examples of environmental factors that have been associated with increased cancer risk in the human population include chemical and physical mutagens (e.g. cigarette smoke, heterocyclic amines, asbestos and UV irradiation), infection by certain viral or bacterial pathogens, and dietary non-genotoxic constituents (e.g. macro- and micronutrients). Among molecular targets of environmental influences on carcinogenesis are somatic mutation (genetic change) and aberrant DNA methylation (epigenetic change) at the genomic level and post-translational modifications at the protein level. At both levels, changes elicited affect either the stability or the activity of key regulatory proteins, including oncoproteins and tumor suppressor proteins. Together, via multiple genetic and epigenetic lesions, environmental factors modulate important changes in the pathway of cellular carcinogenesis. Key words CREB, cyclic AMP response element binding protein EGFR, epidermal growth factor receptor HBV, hepatitis B virus HCC, hepatocellular carcinoma HCV, hepatitis C virus HPV, human papilloma virus IGFR, insulin-like growth factor receptor MAPK, mitogen activated protein kinase NO, nitric oxide PKA, protein kinase A PKC, protein kinase C ROS, reactive oxygen species TFIIH, transcription factor IIH TPA, 12- O -tetradecanoylphorbol-13-acetate. © Oxford University Press « Previous | Next Article » Table of Contents This Article Carcinogenesis (1999) 20 (4): 519-527. doi: 10.1093/carcin/20.4.519 » Abstract Free Full Text (HTML) Free Full Text (PDF) Free Classifications Review Services Article metrics Alert me when cited Alert me if corrected Find similar articles Similar articles in Web of Science Similar articles in PubMed Add to my archive Download citation Request Permissions Citing Articles Load citing article information Citing articles via CrossRef Citing articles via Scopus Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Minamoto, T. Articles by Ronai, Z. Search for related content PubMed PubMed citation Articles by Minamoto, T. Articles by Mai, M. Articles by Ronai, Z. Related Content Load related web page information Share Email this article CiteULike Delicious Facebook Google+ Mendeley Twitter What's this? Search this journal: Advanced » Current Issue October 2015 36 (10) Alert me to new issues The Journal About this journal Rights & Permissions Dispatch date of the next issue This journal is a member of the Committee on Publication Ethics (COPE) We are mobile – find out more Journals Career Network Impact factor: 5.334 5-Yr impact factor: 5.698 Editor-in-Chief Dr Curtis C Harris, USA View full editorial board For Authors Instructions to authors Online submission Submit Now! Self archiving policy Open access options for authors - visit Oxford Open This journal enables compliance with the NIH Public Access Policy Alerting Services Email table of contents Email Advance Access CiteTrack XML RSS feed Corporate Services Advertising sales Reprints Supplements var taxonomies = ("MED00710"); Most Most Read Apoptosis in cancer Modulation of E-cadherin expression by K-Ras; involvement of DNA methyltransferase-3b Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead Tumor progression and metastasis Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability » View all Most Read articles Most Cited Oxyradicals and DNA damage Sensing and repairing DNA double-strand breaks Functional role of estrogen metabolism in target cells: review and perspectives Apoptosis in cancer Nucleotide excision repair and human syndromes » View all Most Cited articles Disclaimer: Please note that abstracts for content published before 1996 were created through digital scanning and may therefore not exactly replicate the text of the original print issues. All efforts have been made to ensure accuracy, but the Publisher will not be held responsible for any remaining inaccuracies. If you require any further clarification, please contact our Customer Services Department. Online ISSN 1460-2180 - Print ISSN 0143-3334 Copyright © 2015 Oxford University Press Oxford Journals Oxford University Press Site Map Privacy Policy Cookie Policy Legal Notices Frequently Asked Questions Other Oxford University Press sites: Oxford University Press Oxford Journals China Oxford Journals Japan Academic & Professional books Children's & Schools Books Dictionaries & Reference Dictionary of National Biography Digital Reference English Language Teaching Higher Education Textbooks International Education Unit Law Medicine Music Online Products & Publishing Oxford Bibliographies Online Oxford Dictionaries Online Oxford English Dictionary Oxford Language Dictionaries Online Oxford Scholarship Online Reference Rights and Permissions Resources for Retailers & Wholesalers Resources for the Healthcare Industry Very Short Introductions World's Classics function fnc_onDomLoaded() { var query_context = getQueryContext(); PF_initOIUnderbar(query_context,":QS:default","","JRN"); PF_insertOIUnderbar(0); }; if (window.addEventListener) { window.addEventListener('load', fnc_onDomLoaded, false); } else if (window.attachEvent) { window.attachEvent('onload', fnc_onDomLoaded); } var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-189672-16"); pageTracker._setDomainName(".oxfordjournals.org"); pageTracker._trackPageview(); } catch(err) {}

Journal

CarcinogenesisOxford University Press

Published: Apr 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off