Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effect of allelic variation at the NACP–Rep1 repeat upstream of the α-synuclein gene (SNCA) on transcription in a cell culture luciferase reporter system

Effect of allelic variation at the NACP–Rep1 repeat upstream of the α-synuclein gene (SNCA) on... Mutations in the α-synuclein gene ( SNCA ) have been implicated in familial Parkinson’s disease (PD) while certain polymorphic alleles at a microsatellite repeat, NACP–Rep1, located ∼10 kb upstream of the gene, have been associated with sporadic PD. In order to study the regulation of the human α-synuclein gene, we performed a deletion analysis of 10.7 kb upstream of the translational start site, using the luciferase reporter assay in 293T cells and the neuroblastoma cell line SH-SY5Y. The shortest fragment, 400 bp upstream of the transcriptional start site, was sufficient for transcription in both cell lines. The other constructs led to variable expression levels, with some showing maximum expression and others showing nearly complete extinction of expression. An 880 bp fragment located ∼10 kb upstream of the gene and containing the NACP–Rep1 polymorphism, was shown to be necessary for normal expression. Additional analysis of the NACP–Rep1 locus and surrounding DNA suggested that two domains flanking the repeat interact to enhance expression while the repeat acts as a negative modulator. Next, we measured the activity of the entire 10.7 kb upstream region in the luciferase reporter assay when each of our different NACP–Rep1 alleles were present. The expression levels varied very significantly among the different alleles over a 3-fold range in the SH-SY5Y cells but showed little or no significant variation in the 293T cells. Given that even small changes in α-synuclein expression may, over many decades, predispose to PD, the association of different NACP–Rep1 alleles with PD may be a consequence of polymorphic differences in transcriptional regulation of α-synuclein expression resulting from different NACP–Rep1 alleles. Received October 15, 2001; Revised and Accepted October 26, 2001. « Previous | Next Article » Table of Contents This Article Hum. Mol. Genet. (2001) 10 (26): 3101-3109. doi: 10.1093/hmg/10.26.3101 » Abstract Free Full Text (HTML) Free Full Text (PDF) Free Classifications Report Services Article metrics Alert me when cited Alert me if corrected Find similar articles Similar articles in Web of Science Similar articles in PubMed Add to my archive Download citation Request Permissions Citing Articles Load citing article information Citing articles via CrossRef Citing articles via Scopus Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Chiba-Falek, O. Articles by Nussbaum, R. L. Search for related content PubMed PubMed citation Articles by Chiba-Falek, O. Articles by Nussbaum, R. L. Related Content Load related web page information Share Email this article CiteULike Delicious Facebook Google+ Mendeley Twitter What's this? Search this journal: Advanced » Current Issue November 15, 2015 24 (22) Alert me to new issues The Journal About this journal Rights & Permissions Dispatch date of the next issue This journal is a member of the Committee on Publication Ethics (COPE) We are mobile – find out more Journals Career Network Impact factor: 6.393 5-Yr impact factor: 6.850 Executive Editors Professor Kay Davies Professor Anthony Wynshaw-Boris Professor Joel Hirschhorn Dr Jeffrey Barrett View full editorial board For Authors Instructions to authors Online submission Submit Now! Self-archiving policy Open access options for authors - visit Oxford Open This journal enables compliance with the NIH Public Access Policy Alerting Services Email table of contents Email Advance Access CiteTrack XML RSS feed Corporate Services Advertising sales Reprints Supplements var taxonomies = ("SCI01140"); Most Most Read Genetics of obesity and the prediction of risk for health Non-coding RNA Telomerase and cancer Ion channel diseases Down syndrome--recent progress and future prospects » View all Most Read articles Most Cited The DNA methyltransferases of mammals Nonsense-Mediated mRNA Decay in Health and Disease Mutation of human short tandem repeats Prediction of deleterious human alleles Isolation of a Candidate Human Telomerase Catalytic Subunit Gene, Which Reveals Complex Splicing Patterns in Different Cell Types » View all Most Cited articles Disclaimer: Please note that abstracts for content published before 1996 were created through digital scanning and may therefore not exactly replicate the text of the original print issues. All efforts have been made to ensure accuracy, but the Publisher will not be held responsible for any remaining inaccuracies. If you require any further clarification, please contact our Customer Services Department. Online ISSN 1460-2083 - Print ISSN 0964-6906 Copyright © 2015 Oxford University Press Oxford Journals Oxford University Press Site Map Privacy Policy Cookie Policy Legal Notices Frequently Asked Questions Other Oxford University Press sites: Oxford University Press Oxford Journals China Oxford Journals Japan Academic & Professional books Children's & Schools Books Dictionaries & Reference Dictionary of National Biography Digital Reference English Language Teaching Higher Education Textbooks International Education Unit Law Medicine Music Online Products & Publishing Oxford Bibliographies Online Oxford Dictionaries Online Oxford English Dictionary Oxford Language Dictionaries Online Oxford Scholarship Online Reference Rights and Permissions Resources for Retailers & Wholesalers Resources for the Healthcare Industry Very Short Introductions World's Classics function fnc_onDomLoaded() { var query_context = getQueryContext(); PF_initOIUnderbar(query_context,":QS:default","","JRN"); PF_insertOIUnderbar(0); }; if (window.addEventListener) { window.addEventListener('load', fnc_onDomLoaded, false); } else if (window.attachEvent) { window.attachEvent('onload', fnc_onDomLoaded); } var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-189672-16"); pageTracker._setDomainName(".oxfordjournals.org"); pageTracker._trackPageview(); } catch(err) {} http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Human Molecular Genetics Oxford University Press

Effect of allelic variation at the NACP–Rep1 repeat upstream of the α-synuclein gene (SNCA) on transcription in a cell culture luciferase reporter system

Loading next page...
 
/lp/oxford-university-press/effect-of-allelic-variation-at-the-nacp-rep1-repeat-upstream-of-the-oU22AlO4Gm

References (30)

Publisher
Oxford University Press
Copyright
Copyright © 2015 Oxford University Press
ISSN
0964-6906
eISSN
1460-2083
DOI
10.1093/hmg/10.26.3101
Publisher site
See Article on Publisher Site

Abstract

Mutations in the α-synuclein gene ( SNCA ) have been implicated in familial Parkinson’s disease (PD) while certain polymorphic alleles at a microsatellite repeat, NACP–Rep1, located ∼10 kb upstream of the gene, have been associated with sporadic PD. In order to study the regulation of the human α-synuclein gene, we performed a deletion analysis of 10.7 kb upstream of the translational start site, using the luciferase reporter assay in 293T cells and the neuroblastoma cell line SH-SY5Y. The shortest fragment, 400 bp upstream of the transcriptional start site, was sufficient for transcription in both cell lines. The other constructs led to variable expression levels, with some showing maximum expression and others showing nearly complete extinction of expression. An 880 bp fragment located ∼10 kb upstream of the gene and containing the NACP–Rep1 polymorphism, was shown to be necessary for normal expression. Additional analysis of the NACP–Rep1 locus and surrounding DNA suggested that two domains flanking the repeat interact to enhance expression while the repeat acts as a negative modulator. Next, we measured the activity of the entire 10.7 kb upstream region in the luciferase reporter assay when each of our different NACP–Rep1 alleles were present. The expression levels varied very significantly among the different alleles over a 3-fold range in the SH-SY5Y cells but showed little or no significant variation in the 293T cells. Given that even small changes in α-synuclein expression may, over many decades, predispose to PD, the association of different NACP–Rep1 alleles with PD may be a consequence of polymorphic differences in transcriptional regulation of α-synuclein expression resulting from different NACP–Rep1 alleles. Received October 15, 2001; Revised and Accepted October 26, 2001. « Previous | Next Article » Table of Contents This Article Hum. Mol. Genet. (2001) 10 (26): 3101-3109. doi: 10.1093/hmg/10.26.3101 » Abstract Free Full Text (HTML) Free Full Text (PDF) Free Classifications Report Services Article metrics Alert me when cited Alert me if corrected Find similar articles Similar articles in Web of Science Similar articles in PubMed Add to my archive Download citation Request Permissions Citing Articles Load citing article information Citing articles via CrossRef Citing articles via Scopus Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Chiba-Falek, O. Articles by Nussbaum, R. L. Search for related content PubMed PubMed citation Articles by Chiba-Falek, O. Articles by Nussbaum, R. L. Related Content Load related web page information Share Email this article CiteULike Delicious Facebook Google+ Mendeley Twitter What's this? Search this journal: Advanced » Current Issue November 15, 2015 24 (22) Alert me to new issues The Journal About this journal Rights & Permissions Dispatch date of the next issue This journal is a member of the Committee on Publication Ethics (COPE) We are mobile – find out more Journals Career Network Impact factor: 6.393 5-Yr impact factor: 6.850 Executive Editors Professor Kay Davies Professor Anthony Wynshaw-Boris Professor Joel Hirschhorn Dr Jeffrey Barrett View full editorial board For Authors Instructions to authors Online submission Submit Now! Self-archiving policy Open access options for authors - visit Oxford Open This journal enables compliance with the NIH Public Access Policy Alerting Services Email table of contents Email Advance Access CiteTrack XML RSS feed Corporate Services Advertising sales Reprints Supplements var taxonomies = ("SCI01140"); Most Most Read Genetics of obesity and the prediction of risk for health Non-coding RNA Telomerase and cancer Ion channel diseases Down syndrome--recent progress and future prospects » View all Most Read articles Most Cited The DNA methyltransferases of mammals Nonsense-Mediated mRNA Decay in Health and Disease Mutation of human short tandem repeats Prediction of deleterious human alleles Isolation of a Candidate Human Telomerase Catalytic Subunit Gene, Which Reveals Complex Splicing Patterns in Different Cell Types » View all Most Cited articles Disclaimer: Please note that abstracts for content published before 1996 were created through digital scanning and may therefore not exactly replicate the text of the original print issues. All efforts have been made to ensure accuracy, but the Publisher will not be held responsible for any remaining inaccuracies. If you require any further clarification, please contact our Customer Services Department. Online ISSN 1460-2083 - Print ISSN 0964-6906 Copyright © 2015 Oxford University Press Oxford Journals Oxford University Press Site Map Privacy Policy Cookie Policy Legal Notices Frequently Asked Questions Other Oxford University Press sites: Oxford University Press Oxford Journals China Oxford Journals Japan Academic & Professional books Children's & Schools Books Dictionaries & Reference Dictionary of National Biography Digital Reference English Language Teaching Higher Education Textbooks International Education Unit Law Medicine Music Online Products & Publishing Oxford Bibliographies Online Oxford Dictionaries Online Oxford English Dictionary Oxford Language Dictionaries Online Oxford Scholarship Online Reference Rights and Permissions Resources for Retailers & Wholesalers Resources for the Healthcare Industry Very Short Introductions World's Classics function fnc_onDomLoaded() { var query_context = getQueryContext(); PF_initOIUnderbar(query_context,":QS:default","","JRN"); PF_insertOIUnderbar(0); }; if (window.addEventListener) { window.addEventListener('load', fnc_onDomLoaded, false); } else if (window.attachEvent) { window.attachEvent('onload', fnc_onDomLoaded); } var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-189672-16"); pageTracker._setDomainName(".oxfordjournals.org"); pageTracker._trackPageview(); } catch(err) {}

Journal

Human Molecular GeneticsOxford University Press

Published: Dec 15, 2001

There are no references for this article.