Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Gaulton, L. Bellis, A. Bento, Jon Chambers, M. Davies, A. Hersey, Yvonne Light, S. McGlinchey, D. Michalovich, B. Al-Lazikani, John Overington (2011)
ChEMBL: a large-scale bioactivity database for drug discoveryNucleic Acids Research, 40
Jianxiang Mei, C. Kwoh, Peng Yang, Xiaoli Li, Jie Zheng (2013)
Drug-target interaction prediction by learning from local information and neighborsBioinformatics, 29 2
G. Morris, R. Huey, William Lindstrom, M. Sanner, R. Belew, D. Goodsell, A. Olson (2009)
AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibilityJournal of Computational Chemistry, 30
Hughes (1999)
Genomic technologies in drug discovery and development.Drug discovery today, 4 1
Yoshihiro Yamanishi, Masaaki Kotera, Yuki Moriya, Ryusuke Sawada, M. Kanehisa, S. Goto (2014)
DINIES: drug–target interaction network inference engine based on supervised analysisNucleic Acids Research, 42
James Golden (2003)
Prioritizing the human genome: knowledge management for drug discovery.Current opinion in drug discovery & development, 6 3
Annalisa Petrelli, Silvia Giordano (2008)
From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage.Current medicinal chemistry, 15 5
M. Hattori, Y. Okuno, S. Goto, M. Kanehisa (2003)
Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways.Journal of the American Chemical Society, 125 39
Jiao Wang, W. Liu, Hailin Tang, Hongwei Xie (2014)
Screening drug target proteins based on sequence informationJournal of biomedical informatics, 49
Haisu Ma, Hongyu Zhao (2013)
Drug target inference through pathway analysis of genomics data.Advanced drug delivery reviews, 65 7
Tao Huang, K. Tu, Y. Shyr, Chaochun Wei, Lu Xie, Yixue Li (2008)
The prediction of interferon treatment effects based on time series microarray gene expression profilesJournal of Translational Medicine, 6
B. Stockwell (2000)
Chemical genetics: ligand-based discovery of gene functionNature Reviews Genetics, 1
Jian-Yu Shi, Zun Liu, Hui Yu, Yongjun Li (2015)
Predicting Drug-Target Interactions via Within-Score and Between-ScoreBioMed Research International, 2015
D. Emig, Alexander Ivliev, O. Pustovalova, L. Lancashire, S. Bureeva, Y. Nikolsky, M. Bessarabova (2013)
Drug Target Prediction and Repositioning Using an Integrated Network-Based ApproachPLoS ONE, 8
S. Núñez, J. Venhorst, C. Kruse (2012)
Target-drug interactions: first principles and their application to drug discovery.Drug discovery today, 17 1-2
A. Hopkins, C. Groom (2002)
The druggable genomeNature Reviews Drug Discovery, 1
Psychoactive Drug Screening Program , Contract No . HHSN - 271 - 2008 - 00025 - C ( NIMH PDSP ) 2008
Hua Yu, Jianxin Chen, Xue Xu, Yan Li, Huihui Zhao, Yupeng Fang, Xiuxiu Li, W. Zhou, Wei Wang, Yonghua Wang (2012)
A Systematic Prediction of Multiple Drug-Target Interactions from Chemical, Genomic, and Pharmacological DataPLoS ONE, 7
Michael Keiser, V. Setola, J. Irwin, Christian Laggner, Atheir Abbas, S. Hufeisen, Niels Jensen, M. Kuijer, Roberto Matos, T. Tran, R. Whaley, R. Glennon, J. Hert, Kelan Thomas, D. Edwards, B. Shoichet, B. Roth (2009)
Predicting new molecular targets for known drugsNature, 462
M. MacDonald, J. Lamerdin, Stephen Owens, B. Keon, G. Bilter, Zhidi Shang, Zhengping Huang, Helen Yu, Jennifer Dias, Tomoe Minami, S. Michnick, J. Westwick (2006)
Identifying off-target effects and hidden phenotypes of drugs in human cellsNature Chemical Biology, 2
Michael Kuhn, Damian Szklarczyk, Sune Pletscher-Frankild, T. Blicher, C. Mering, L. Jensen, P. Bork (2013)
STITCH 4: integration of protein–chemical interactions with user dataNucleic Acids Research, 42
Hao Ding, Ichigaku Takigawa, Hiroshi Mamitsuka, Shanfeng Zhu (2014)
Similarity-based machine learning methods for predicting drug-target interactions: a brief reviewBriefings in bioinformatics, 15 5
E. Wang, Naif Zaman, Shauna McGee, Jean-Sébastien Milanese, A. Masoudi-Nejad, M. O’Connor-McCourt (2014)
Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.Seminars in cancer biology, 30
Yanbin Liu, B. Hu, Chen Fu, Xin Chen (2010)
DCDB: Drug combination databaseBioinformatics, 26 4
C. Dobson (2004)
Chemical space and biologyNature, 432
Janette Nickel, Björn-Oliver Gohlke, Jevgeni Erehman, Priyanka Banerjee, W. Rong, A. Goede, Mathias Dunkel, R. Preissner (2014)
SuperPred: update on drug classification and target predictionNucleic Acids Research, 42
M. Kanehisa, S. Goto, M. Hattori, Kiyoko Aoki-Kinoshita, M. Itoh, S. Kawashima, Toshiaki Katayama, M. Araki, M. Hirakawa (2005)
From genomics to chemical genomics: new developments in KEGGNucleic Acids Research, 34
M. Çobanoğlu, Chang Liu, Feizhuo Hu, Z. Oltvai, I. Bahar (2013)
Predicting Drug–Target Interactions Using Probabilistic Matrix FactorizationJournal of Chemical Information and Modeling, 53
Yoshihiro Yamanishi, M. Araki, Alex Gutteridge, Wataru Honda, M. Kanehisa (2008)
Prediction of drug–target interaction networks from the integration of chemical and genomic spacesBioinformatics, 24
Yuhao Wang, Jianyang Zeng (2013)
Predicting drug-target interactions using restricted Boltzmann machinesBioinformatics, 29
J. Irwin, T. Sterling, Michael Mysinger, Erin Bolstad, R. Coleman (2012)
ZINC: A Free Tool to Discover Chemistry for BiologyJournal of Chemical Information and Modeling, 52
F. Cheng, Chuang Liu, Jing Jiang, Weiqiang Lu, Weihua Li, Guixia Liu, Wei‐Xing Zhou, Jin Huang, Yun Tang (2012)
Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based InferencePLoS Computational Biology, 8
P. Imming, C. Sinning, A. Meyer (2006)
Drugs, their targets and the nature and number of drug targetsNature Reviews Drug Discovery, 5
Yoshihiro Yamanishi, Masaaki Kotera, M. Kanehisa, S. Goto (2010)
Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated frameworkBioinformatics, 26
Hélène Chiapello, Annie Gendrault, Christophe Caron, Jérome Blum, Marie-Agnès Petit, M. Karoui (2008)
MOSAIC: an online database dedicated to the comparative genomics of bacterial strains at the intra-species levelBMC Bioinformatics, 9
Ted Ashburn, K. Thor (2004)
Drug repositioning: identifying and developing new uses for existing drugsNature Reviews Drug Discovery, 3
F. Kuruvilla, Alykhan Shamji, S. Sternson, P. Hergenrother, S. Schreiber (2002)
Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarraysNature, 416
(2007)
Nucleic Acids Research Advance Access published October 18, 2007 ChemBank: a small-molecule screening and
S. Frantz (2005)
Drug discovery: Playing dirtyNature, 437
Xing Chen, Guiying Yan (2013)
Novel human lncRNA-disease association inference based on lncRNA expression profilesBioinformatics, 29 20
Michael Kuhn, M. Campillos, Ivica Letunic, L. Jensen, P. Bork (2010)
A side effect resource to capture phenotypic effects of drugsMolecular Systems Biology, 6
A. Hopkins (2008)
Network pharmacology: the next paradigm in drug discovery.Nature chemical biology, 4 11
Hailin Chen, Zuping Zhang (2013)
A Semi-Supervised Method for Drug-Target Interaction Prediction with Consistency in NetworksPLoS ONE, 8
S. Whitebread, J. Hamon, D. Bojanic, L. Urban (2005)
Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development.Drug discovery today, 10 21
S. Paul, D. Mytelka, C. Dunwiddie, Charles Persinger, B. Munos, S. Lindborg, A. Schacht (2010)
How to improve R&D productivity: the pharmaceutical industry's grand challengeNature Reviews Drug Discovery, 9
J. Drews (2000)
Drug discovery: a historical perspective.Science, 287 5460
A. Cheng, R. Coleman, Kathleen Smyth, Qing Cao, P. Soulard, Daniel Caffrey, Anna Salzberg, Enoch Huang (2007)
Structure-based maximal affinity model predicts small-molecule druggabilityNature Biotechnology, 25
Nikolai Hecker, Jessica Ahmed, J. Eichborn, Mathias Dunkel, Karel Macha, Andreas Eckert, M. Gilson, P. Bourne, R. Preissner (2011)
SuperTarget goes quantitative: update on drug–target interactionsNucleic Acids Research, 40
Xing Chen, B. Ren, Ming Chen, Mingxi Liu, Wei Ren, Quanxin Wang, Li-xin Zhang, Guiying Yan (2014)
ASDCD: Antifungal Synergistic Drug Combination DatabasePLoS ONE, 9
C. Qin, Cheng Zhang, F. Zhu, Feng Xu, S. Chen, Peng Zhang, Yinghong Li, S. Yang, Yuquan Wei, Lin Tao, Y. Chen (2013)
Therapeutic target database update 2014: a resource for targeted therapeuticsNucleic Acids Research, 42
V. Law, Craig Knox, Yannick Djoumbou, Timothy Jewison, Anchi Guo, Yifeng Liu, Adam Maciejewski, David Arndt, Michael Wilson, V. Neveu, Alexandra Tang, Geraldine Gabriel, Carol Ly, Sakina Adamjee, Zerihun Dame, B. Han, You Zhou, D. Wishart (2013)
DrugBank 4.0: shedding new light on drug metabolismNucleic Acids Research, 42
Lei Chen, Weiming Zeng (2013)
A two-step similarity-based method for prediction of drug's target group.Protein and peptide letters, 20 3
S. Haggarty, K. Koeller, Jason Wong, R. Butcher, S. Schreiber (2003)
Multidimensional chemical genetic analysis of diversity-oriented synthesis-derived deacetylase inhibitors using cell-based assays.Chemistry & biology, 10 5
T. Pahikkala, A. Airola, Sami Pietila, S. Shakyawar, Agnieszka Szwajda, T. Aittokallio (2014)
Toward more realistic drug^target interaction predictions
Tiqing Liu, Yuhmei Lin, Xin Wen, R. Jorissen, M. Gilson (2006)
BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinitiesNucleic Acids Research, 35
Zheng Xia, Ling-Yun Wu, Xiaobo Zhou, Stephen Wong (2010)
Semi-supervised drug-protein interaction prediction from heterogeneous biological spacesBMC Systems Biology, 4
G. Zimmermann, J. Lehár, Curtis Keith (2007)
Multi-target therapeutics: when the whole is greater than the sum of the parts.Drug discovery today, 12 1-2
Lei Xie, Li Xie, Sarah Kinnings, P. Bourne (2012)
Novel computational approaches to polypharmacology as a means to define responses to individual drugs.Annual review of pharmacology and toxicology, 52
K. Giuliano, Jeffrey Haskins, D. Taylor (2003)
Advances in high content screening for drug discovery.Assay and drug development technologies, 1 4
Xing Chen, Mingxi Liu, Guiying Yan (2012)
Drug-target interaction prediction by random walk on the heterogeneous network.Molecular bioSystems, 8 7
Dongsheng Cao, Liu-Xia Zhang, Gui-Shan Tan, Zheng Xiang, Wenbin Zeng, Qingsong Xu, Alex Chen (2014)
Computational Prediction of DrugTarget Interactions Using Chemical, Biological, and Network FeaturesMolecular Informatics, 33
B. Petriz, Clarissa Gomes, L. Rocha, T. Rezende, O. Franco (2012)
Proteomics applied to exercise physiology: A cutting‐edge technologyJournal of Cellular Physiology, 227
S. Günther, Michael Kuhn, Mathias Dunkel, M. Campillos, C. Senger, E. Petsalaki, Jessica Ahmed, Eduardo Urdiales, A. Gewiess, L. Jensen, Reinhard Schneider, Roman Skoblo, R. Russell, P. Bourne, P. Bork, R. Preissner (2007)
SuperTarget and Matador: resources for exploring drug-target relationshipsNucleic Acids Research, 36
I. Kola, John Landis (2004)
Can the pharmaceutical industry reduce attrition rates?Nature Reviews Drug Discovery, 3
Rahul Kumar, Kumardeep Chaudhary, Sudheer Gupta, Harinder Singh, Shailesh Kumar, A. Gautam, P. Kapoor, Gajendra Raghava (2013)
CancerDR: Cancer Drug Resistance DatabaseScientific Reports, 3
Kun Yang, Hongjun Bai, Ouyang Qi, L. Lai, Chao Tang (2008)
Finding multiple target optimal intervention in disease-related molecular networkMolecular Systems Biology, 4
Y. Landry, J. Gies (2008)
Drugs and their molecular targets: an updated overviewFundamental & Clinical Pharmacology, 22
John Overington, B. Al-Lazikani, A. Hopkins (2006)
How many drug targets are there?Nature Reviews Drug Discovery, 5
John Allen, B. Roth (2011)
Strategies to discover unexpected targets for drugs active at G protein-coupled receptors.Annual review of pharmacology and toxicology, 51
M. Iskar, G. Zeller, Xingming Zhao, V. Noort, P. Bork (2012)
Drug discovery in the age of systems biology: the rise of computational approaches for data integration.Current opinion in biotechnology, 23 4
D. Gfeller, A. Grosdidier, M. Wirth, Antoine Daina, O. Michielin, V. Zoete (2014)
SwissTargetPrediction: a web server for target prediction of bioactive small moleculesNucleic Acids Research, 42
Mindy Davis, Jeremy Hunt, S. Herrgård, P. Ciceri, L. Wodicka, Gabriel Pallares, M. Hocker, D. Treiber, P. Zarrinkar (2011)
Comprehensive analysis of kinase inhibitor selectivityNature Biotechnology, 29
M. Dickson, J. Gagnon (2004)
Key factors in the rising cost of new drug discovery and developmentNature Reviews Drug Discovery, 3
(2004)
Prospects for productivity
Adam Pawson, J. Sharman, H. Benson, E. Faccenda, Stephen Alexander, O. Buneman, A. Davenport, J. McGrath, J. Peters, C. Southan, M. Spedding, Wenyuan Yu, A. Harmar, Nc-Iuphar (2013)
The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligandsNucleic Acids Research, 42
K. Bleakley, Yoshihiro Yamanishi (2009)
Supervised prediction of drug–target interactions using bipartite local modelsBioinformatics, 25
M. Halling-Brown, K. Bulusu, Mishal Patel, Joseph Tym, B. Al-Lazikani (2011)
canSAR: an integrated cancer public translational research and drug discovery resourceNucleic Acids Research, 40
M. Campillos, Michael Kuhn, A. Gavin, L. Jensen, P. Bork (2008)
Drug Target Identification Using Side-Effect SimilarityScience, 321
E. Wang, Jinfeng Zou, Naif Zaman, L. Beitel, M. Trifiro, M. Paliouras (2013)
Cancer systems biology in the genome sequencing era: part 2, evolutionary dynamics of tumor clonal networks and drug resistance.Seminars in cancer biology, 23 4
Temple Smith, M. Waterman (1981)
Identification of common molecular subsequences.Journal of molecular biology, 147 1
Richa Bourexi, R. Agarwala, T. Barrett, J. Beck, D. Benson, Colleen Bollin, Evan Bolton, Devon Bourexis, J. Brister, S. Bryant, Kathi Canese, Mark Cavanaugh, Chad Charowhas, Karen Clark, I. Dondoshansky, M. Feolo, Lawrence Fitzpatrick, Kathryn Funk, L. Geer, V. Gorelenkov, Alan Graeff, W. Hlavina, Brad Holmes, Mark Johnson, B. Kattman, Viatcheslav Khotomlianski, Avi Kimchi, Michael Kimelman, Masato Kimura, P. Kitts, W. Klimke, A. Kotliarov, S. Krasnov, A. Kuznetsov, M. Landrum, D. Landsman, S. Lathrop, Jennifer Lee, Carl Leubsdorf, Zhiyong Lu, Thomas Madden, A. Marchler-Bauer, Adriana Malheiro, Peter Meric, I. Karsch-Mizrachi, Anatoly Mnev, Terence Murphy, R. Orris, J. Ostell, Christopher O'Sullivan, Vasuki Palanigobu, A. Panchenko, Lon Phan, Borys Pierov, K. Pruitt, K. Rodarmer, E. Sayers, Valerie Schneider, C. Schoch, G. Schuler, S. Sherry, Karanjit Siyan, Alexandra Soboleva, Vladimir Soussov, G. Starchenko, T. Tatusova, F. Thibaud-Nissen, K. Todorov, B. Trawick, D. Vakatov, Minghong Ward, E. Yaschenko, A. Zasypkin, Kerry Zbicz (2017)
Database resources of the National Center for Biotechnology InformationNucleic Acids Research, 46
B. Donald (2011)
Algorithms in Structural Molecular Biology
C. Zheng, Lianyi Han, C. Yap, B. Xie, Yuzong Chen (2006)
Progress and problems in the exploration of therapeutic targets.Drug discovery today, 11 9-10
J. Metz, Eric Johnson, N. Soni, Philip Merta, L. Kifle, P. Hajduk (2011)
Navigating the kinome.Nature chemical biology, 7 4
E. Wang, Jinfeng Zou, Naif Zaman, L. Beitel, M. Trifiro, M. Paliouras (2013)
Cancer systems biology in the genome sequencing era: part 1, dissecting and modeling of tumor clones and their networks.Seminars in cancer biology, 23 4
(2012)
Flaws in evaluation schemes for pair - input computational predictions
Tao Huang, Weiren Cui, ZhiSong He, Lele Hu, Fang Liu, T. Wen, Yixue Li, Yudong Cai (2009)
Functional association between influenza A (H1N1) virus and human.Biochemical and biophysical research communications, 390 4
María Magariños, Santiago Carmona, Gregory Crowther, S. Ralph, D. Roos, Dhanasekaran Shanmugam, W. Voorhis, Fernán Agüero (2011)
TDR Targets: a chemogenomics resource for neglected diseasesNucleic Acids Research, 40
Identification of drugtarget interactions is an important process in drug discovery. Although high-throughput screening and other biological assays are becoming available, experimental methods for drugtarget interaction identification remain to be extremely costly, time-consuming and challenging even nowadays. Therefore, various computational models have been developed to predict potential drugtarget associations on a large scale. In this review, databases and web servers involved in drugtarget identification and drug discovery are summarized. In addition, we mainly introduced some state-of-the-art computational models for drugtarget interactions prediction, including network-based method, machine learning-based method and so on. Specially, for the machine learning-based method, much attention was paid to supervised and semi-supervised models, which have essential difference in the adoption of negative samples. Although significant improvements for drugtarget interaction prediction have been obtained by many effective computational models, both network-based and machine learning-based methods have their disadvantages, respectively. Furthermore, we discuss the future directions of the network-based drug discovery and network approach for personalized drug discovery based on personalized medicine, genome sequencing, tumor clone-based network and cancer hallmark-based network. Finally, we discussed the new evaluation validation framework and the formulation of drugtarget interactions prediction problem by more realistic regression formulation based on quantitative bioactivity data.
Briefings in Bioinformatics – Oxford University Press
Published: Jul 13, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.