Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice

Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice Mouse aphakia ( ak ) is a recessive phenotype that spontaneously occurs in the 129/Sv-SlJ strain and is characterized by small eyes that lack a lens. We have recently identified a homeobox-containing gene, Pitx3 , and have shown that it is expressed in the developing lens and maps to chromosome 19 close to ak in mouse. Human PITX3 gene was found to underlie anterior segment dysgenesis and cataracts. We have now obtained the entire sequence of the mouse Pitx3 gene including 10 kb of the 5′ region and 5 kb of the 3′ region. Of several microsatellite repeat regions identified within the Pitx3 sequence, one was informative for linkage analysis. No recombination was observed between ak and the Pitx3 marker, indicating that these two loci are closely linked (0.2 ± 0.2 cM). Additionally, Pitx3 transcripts were not detected in the ak/ak mice either in the lens placode or at later developmental stages of the lens by in situ hybridization. Since no differences were previously found between ak/ak and wild-type sequences in the Pitx3 coding region, we hypothesized that an etiologic mutation is located in the promoter or other regulatory regions. To test this hypothesis we studied the 5′ flanking region of the Pitx3 gene. This analysis revealed a deletion of 652 bp located 2.5 kb upstream from the start point of the Pitx3 5′ UTR sequence in ak/ak mice. The deletion co-segregated with the ak mutation and was not detected in 16 samples from 10 different mouse strains including the founder strains. Analysis of the 652 bp region identified sequences similar to consensus binding sites for transcription factors AP-2 and Maf that were shown to play a critical role in lens determination. These lines of evidence suggest that the abnormal ocular development in the aphakia mouse is due to the deletion upstream of the Pitx3 gene. Received 4 February 2000; Revised and Accepted 14 April 2000. « Previous | Next Article » Table of Contents This Article Hum. Mol. Genet. (2000) 9 (11): 1575-1585. doi: 10.1093/hmg/9.11.1575 » Abstract Free Full Text (HTML) Free Full Text (PDF) Free Classifications Report Services Article metrics Alert me when cited Alert me if corrected Find similar articles Similar articles in Web of Science Similar articles in PubMed Add to my archive Download citation Request Permissions Citing Articles Load citing article information Citing articles via CrossRef Citing articles via Scopus Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Semina, E. V. Articles by Graw, J. Search for related content PubMed PubMed citation Articles by Semina, E. V. Articles by Murray, J. C. Articles by Reiter, R. Articles by Hrstka, R. F. Articles by Graw, J. Related Content Load related web page information Share Email this article CiteULike Delicious Facebook Google+ Mendeley Twitter What's this? Search this journal: Advanced » Current Issue November 15, 2015 24 (22) Alert me to new issues The Journal About this journal Rights & Permissions Dispatch date of the next issue This journal is a member of the Committee on Publication Ethics (COPE) We are mobile – find out more Journals Career Network Impact factor: 6.393 5-Yr impact factor: 6.850 Executive Editors Professor Kay Davies Professor Anthony Wynshaw-Boris Professor Joel Hirschhorn Dr Jeffrey Barrett View full editorial board For Authors Instructions to authors Online submission Submit Now! Self-archiving policy Open access options for authors - visit Oxford Open This journal enables compliance with the NIH Public Access Policy Alerting Services Email table of contents Email Advance Access CiteTrack XML RSS feed Corporate Services Advertising sales Reprints Supplements var taxonomies = ("SCI01140"); Most Most Read Genetics of obesity and the prediction of risk for health Non-coding RNA Telomerase and cancer Ion channel diseases Down syndrome--recent progress and future prospects » View all Most Read articles Most Cited The DNA methyltransferases of mammals Nonsense-Mediated mRNA Decay in Health and Disease Mutation of human short tandem repeats Prediction of deleterious human alleles Isolation of a Candidate Human Telomerase Catalytic Subunit Gene, Which Reveals Complex Splicing Patterns in Different Cell Types » View all Most Cited articles Disclaimer: Please note that abstracts for content published before 1996 were created through digital scanning and may therefore not exactly replicate the text of the original print issues. All efforts have been made to ensure accuracy, but the Publisher will not be held responsible for any remaining inaccuracies. If you require any further clarification, please contact our Customer Services Department. Online ISSN 1460-2083 - Print ISSN 0964-6906 Copyright © 2015 Oxford University Press Oxford Journals Oxford University Press Site Map Privacy Policy Cookie Policy Legal Notices Frequently Asked Questions Other Oxford University Press sites: Oxford University Press Oxford Journals China Oxford Journals Japan Academic & Professional books Children's & Schools Books Dictionaries & Reference Dictionary of National Biography Digital Reference English Language Teaching Higher Education Textbooks International Education Unit Law Medicine Music Online Products & Publishing Oxford Bibliographies Online Oxford Dictionaries Online Oxford English Dictionary Oxford Language Dictionaries Online Oxford Scholarship Online Reference Rights and Permissions Resources for Retailers & Wholesalers Resources for the Healthcare Industry Very Short Introductions World's Classics function fnc_onDomLoaded() { var query_context = getQueryContext(); PF_initOIUnderbar(query_context,":QS:default","","JRN"); PF_insertOIUnderbar(0); }; if (window.addEventListener) { window.addEventListener('load', fnc_onDomLoaded, false); } else if (window.attachEvent) { window.attachEvent('onload', fnc_onDomLoaded); } var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-189672-16"); pageTracker._setDomainName(".oxfordjournals.org"); pageTracker._trackPageview(); } catch(err) {} http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Human Molecular Genetics Oxford University Press

Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice

Loading next page...
 
/lp/oxford-university-press/deletion-in-the-promoter-region-and-altered-expression-of-pitx3-Glkrrd5Yfz
Publisher
Oxford University Press
Copyright
Copyright © 2015 Oxford University Press
ISSN
0964-6906
eISSN
1460-2083
DOI
10.1093/hmg/9.11.1575
Publisher site
See Article on Publisher Site

Abstract

Mouse aphakia ( ak ) is a recessive phenotype that spontaneously occurs in the 129/Sv-SlJ strain and is characterized by small eyes that lack a lens. We have recently identified a homeobox-containing gene, Pitx3 , and have shown that it is expressed in the developing lens and maps to chromosome 19 close to ak in mouse. Human PITX3 gene was found to underlie anterior segment dysgenesis and cataracts. We have now obtained the entire sequence of the mouse Pitx3 gene including 10 kb of the 5′ region and 5 kb of the 3′ region. Of several microsatellite repeat regions identified within the Pitx3 sequence, one was informative for linkage analysis. No recombination was observed between ak and the Pitx3 marker, indicating that these two loci are closely linked (0.2 ± 0.2 cM). Additionally, Pitx3 transcripts were not detected in the ak/ak mice either in the lens placode or at later developmental stages of the lens by in situ hybridization. Since no differences were previously found between ak/ak and wild-type sequences in the Pitx3 coding region, we hypothesized that an etiologic mutation is located in the promoter or other regulatory regions. To test this hypothesis we studied the 5′ flanking region of the Pitx3 gene. This analysis revealed a deletion of 652 bp located 2.5 kb upstream from the start point of the Pitx3 5′ UTR sequence in ak/ak mice. The deletion co-segregated with the ak mutation and was not detected in 16 samples from 10 different mouse strains including the founder strains. Analysis of the 652 bp region identified sequences similar to consensus binding sites for transcription factors AP-2 and Maf that were shown to play a critical role in lens determination. These lines of evidence suggest that the abnormal ocular development in the aphakia mouse is due to the deletion upstream of the Pitx3 gene. Received 4 February 2000; Revised and Accepted 14 April 2000. « Previous | Next Article » Table of Contents This Article Hum. Mol. Genet. (2000) 9 (11): 1575-1585. doi: 10.1093/hmg/9.11.1575 » Abstract Free Full Text (HTML) Free Full Text (PDF) Free Classifications Report Services Article metrics Alert me when cited Alert me if corrected Find similar articles Similar articles in Web of Science Similar articles in PubMed Add to my archive Download citation Request Permissions Citing Articles Load citing article information Citing articles via CrossRef Citing articles via Scopus Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Semina, E. V. Articles by Graw, J. Search for related content PubMed PubMed citation Articles by Semina, E. V. Articles by Murray, J. C. Articles by Reiter, R. Articles by Hrstka, R. F. Articles by Graw, J. Related Content Load related web page information Share Email this article CiteULike Delicious Facebook Google+ Mendeley Twitter What's this? Search this journal: Advanced » Current Issue November 15, 2015 24 (22) Alert me to new issues The Journal About this journal Rights & Permissions Dispatch date of the next issue This journal is a member of the Committee on Publication Ethics (COPE) We are mobile – find out more Journals Career Network Impact factor: 6.393 5-Yr impact factor: 6.850 Executive Editors Professor Kay Davies Professor Anthony Wynshaw-Boris Professor Joel Hirschhorn Dr Jeffrey Barrett View full editorial board For Authors Instructions to authors Online submission Submit Now! Self-archiving policy Open access options for authors - visit Oxford Open This journal enables compliance with the NIH Public Access Policy Alerting Services Email table of contents Email Advance Access CiteTrack XML RSS feed Corporate Services Advertising sales Reprints Supplements var taxonomies = ("SCI01140"); Most Most Read Genetics of obesity and the prediction of risk for health Non-coding RNA Telomerase and cancer Ion channel diseases Down syndrome--recent progress and future prospects » View all Most Read articles Most Cited The DNA methyltransferases of mammals Nonsense-Mediated mRNA Decay in Health and Disease Mutation of human short tandem repeats Prediction of deleterious human alleles Isolation of a Candidate Human Telomerase Catalytic Subunit Gene, Which Reveals Complex Splicing Patterns in Different Cell Types » View all Most Cited articles Disclaimer: Please note that abstracts for content published before 1996 were created through digital scanning and may therefore not exactly replicate the text of the original print issues. All efforts have been made to ensure accuracy, but the Publisher will not be held responsible for any remaining inaccuracies. If you require any further clarification, please contact our Customer Services Department. Online ISSN 1460-2083 - Print ISSN 0964-6906 Copyright © 2015 Oxford University Press Oxford Journals Oxford University Press Site Map Privacy Policy Cookie Policy Legal Notices Frequently Asked Questions Other Oxford University Press sites: Oxford University Press Oxford Journals China Oxford Journals Japan Academic & Professional books Children's & Schools Books Dictionaries & Reference Dictionary of National Biography Digital Reference English Language Teaching Higher Education Textbooks International Education Unit Law Medicine Music Online Products & Publishing Oxford Bibliographies Online Oxford Dictionaries Online Oxford English Dictionary Oxford Language Dictionaries Online Oxford Scholarship Online Reference Rights and Permissions Resources for Retailers & Wholesalers Resources for the Healthcare Industry Very Short Introductions World's Classics function fnc_onDomLoaded() { var query_context = getQueryContext(); PF_initOIUnderbar(query_context,":QS:default","","JRN"); PF_insertOIUnderbar(0); }; if (window.addEventListener) { window.addEventListener('load', fnc_onDomLoaded, false); } else if (window.attachEvent) { window.attachEvent('onload', fnc_onDomLoaded); } var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-189672-16"); pageTracker._setDomainName(".oxfordjournals.org"); pageTracker._trackPageview(); } catch(err) {}

Journal

Human Molecular GeneticsOxford University Press

Published: Jul 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off