DeePaC: Predicting pathogenic potential of novel DNA with reverse-complement neural networks

DeePaC: Predicting pathogenic potential of novel DNA with reverse-complement neural networks Abstract Motivation We expect novel pathogens to arise due to their fast-paced evolution, and new species to be discovered thanks to advances in DNA sequencing and metagenomics. Moreover, recent developments in synthetic biology raise concerns that some strains of bacteria could be modified for malicious purposes. Traditional approaches to open-view pathogen detection depend on databases of known organisms, which limits their performance on unknown, unrecognized, and unmapped sequences. In contrast, machine learning methods can infer pathogenic phenotypes from single NGS reads, even though the biological context is unavailable. Results We present DeePaC, a Deep Learning Approach to Pathogenicity Classification. It includes a flexible framework allowing easy evaluation of neural architectures with reverse-complement parameter sharing. We show that convolutional neural networks and LSTMs outperform the state-of-the-art based on both sequence homology and machine learning. Combining a deep learning approach with integrating the predictions for both mates in a read pair results in cutting the error rate almost in half in comparison to the previous state-of-the-art. Availability The code and the models are available at: https://gitlab.com/rki_bioinformatics/DeePaC Supplementary information Supplementary data are available at Bioinformatics online. This content is only available as a PDF. © The Author(s) (2019). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bioinformatics Oxford University Press

DeePaC: Predicting pathogenic potential of novel DNA with reverse-complement neural networks

Loading next page...
 
/lp/oxford-university-press/deepac-predicting-pathogenic-potential-of-novel-dna-with-reverse-mdfdGqbnlW
Publisher
Oxford University Press
Copyright
© The Author(s) (2019). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
ISSN
1367-4803
eISSN
1460-2059
D.O.I.
10.1093/bioinformatics/btz541
Publisher site
See Article on Publisher Site

Abstract

Abstract Motivation We expect novel pathogens to arise due to their fast-paced evolution, and new species to be discovered thanks to advances in DNA sequencing and metagenomics. Moreover, recent developments in synthetic biology raise concerns that some strains of bacteria could be modified for malicious purposes. Traditional approaches to open-view pathogen detection depend on databases of known organisms, which limits their performance on unknown, unrecognized, and unmapped sequences. In contrast, machine learning methods can infer pathogenic phenotypes from single NGS reads, even though the biological context is unavailable. Results We present DeePaC, a Deep Learning Approach to Pathogenicity Classification. It includes a flexible framework allowing easy evaluation of neural architectures with reverse-complement parameter sharing. We show that convolutional neural networks and LSTMs outperform the state-of-the-art based on both sequence homology and machine learning. Combining a deep learning approach with integrating the predictions for both mates in a read pair results in cutting the error rate almost in half in comparison to the previous state-of-the-art. Availability The code and the models are available at: https://gitlab.com/rki_bioinformatics/DeePaC Supplementary information Supplementary data are available at Bioinformatics online. This content is only available as a PDF. © The Author(s) (2019). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Journal

BioinformaticsOxford University Press

Published: Jan 9, 18

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off