Access the full text.
Sign up today, get DeepDyve free for 14 days.
S. Brady, David Orlando, Ji-Young Lee, Jean Wang, Jeremy Koch, J. Dinneny, Daniel Mace, U. Ohler, P. Benfey (2007)
A High-Resolution Root Spatiotemporal Map Reveals Dominant Expression PatternsScience, 318
K. Birnbaum, D. Shasha, Jean Wang, Jee Jung, G. Lambert, D. Galbraith, P. Benfey (2003)
A Gene Expression Map of the Arabidopsis RootScience, 302
G. Drews, J. Bowman, E. Meyerowitz (1991)
Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 productCell, 65
Evyatar Steiner, I. Efroni, Manjula Gopalraj, Katie Saathoff, T. Tseng, M. Kieffer, Y. Eshed, N. Olszewski, D. Weiss (2012)
The Arabidopsis O-Linked N-Acetylglucosamine Transferase SPINDLY Interacts with Class I TCPs to Facilitate Cytokinin Responses in Leaves and Flowers[C][W]Plant Cell, 24
S. Feng, S. Jacobsen, W. Reik (2010)
Epigenetic Reprogramming in Plant and Animal DevelopmentScience, 330
G. Horiguchi, Ushio Fujikura, A. Ferjani, N. Ishikawa, H. Tsukaya (2006)
Large-scale histological analysis of leaf mutants using two simple leaf observation methods: identification of novel genetic pathways governing the size and shape of leaves.The Plant journal : for cell and molecular biology, 48 4
R. Schwab, S. Ossowski, Markus Riester, N. Warthmann, D. Weigel (2006)
Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis[W][OA]The Plant Cell Online, 18
Kai-Uwe Winter, Thomas Münster, H. Saedler, A. Becker, Charlotte Kirchner, Günter Theien (2002)
How the land plants learned their floral ABCs: the role of MADS-box genes in the evolutionary origin of flowers
J. Riechmann, Minqin Wang, E. Meyerowitz (1996)
DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS.Nucleic acids research, 24 16
T. Bailey, C. Elkan (1994)
Fitting a Mixture Model By Expectation Maximization To Discover Motifs In BiopolymerProceedings. International Conference on Intelligent Systems for Molecular Biology, 2
F. Wellmer, M. Alves-Ferreira, A. Dubois, J. Riechmann, E. Meyerowitz (2006)
Genome-Wide Analysis of Gene Expression during Early Arabidopsis Flower DevelopmentPLoS Genetics, 2
B. Krizek, M. Lewis, J. Fletcher (2006)
RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers.The Plant journal : for cell and molecular biology, 45 3
K. Jofuku, B. Boer, M. Montagu, J. Okamuro (1994)
Control of Arabidopsis flower and seed development by the homeotic gene APETALA2.The Plant cell, 6 9
E. Chae, Q. Tan, T. Hill, V. Irish (2008)
An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development, 135
Y. Eshed, S. Baum, J. Perea, J. Bowman (2001)
Establishment of polarity in lateral organs of plantsCurrent Biology, 11
R. Immink, K. Kaufmann, G. Angenent (2010)
The 'ABC' of MADS domain protein behaviour and interactions.Seminars in cell & developmental biology, 21 1
Kristina Gremski, G. Ditta, M. Yanofsky (2007)
The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana, 134
A. Schnittger, G. Jürgens, M. Hülskamp (1998)
Tissue layer and organ specificity of trichome formation are regulated by GLABRA1 and TRIPTYCHON in Arabidopsis.Development, 125 12
F. Wellmer, J. Riechmann (2005)
Gene network analysis in plant development by genomic technologies.The International journal of developmental biology, 49 5-6
Samuel Wuest, K. Vijverberg, A. Schmidt, M. Weiss, J. Gheyselinck, Miriam Lohr, F. Wellmer, J. Rahnenführer, C. Mering, U. Grossniklaus (2010)
Arabidopsis Female Gametophyte Gene Expression Map Reveals Similarities between Plant and Animal GametesCurrent Biology, 20
Molecular Systems Biology 6; Article number 419; doi:10.1038/msb.2010.76 Citation: Molecular Systems Biology 6:419
C. Gómez-Mena, S. Folter, M. Costa, G. Angenent, R. Sablowski (2005)
Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis, 132
J. Esch, Margaret Chen, M. Sanders, Matthew Hillestad, Sampson Ndkium, Brian Idelkope, James Neizer, David Marks (2003)
A contradictory GLABRA3 allele helps define gene interactions controlling trichome development in Arabidopsis, 130
S. Clough, A. Bent (1998)
Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana.The Plant journal : for cell and molecular biology, 16 6
K. Kaufmann, J. Muiño, R. Jáuregui, C. Airoldi, C. Smaczniak, P. Krajewski, G. Angenent (2009)
Target Genes of the MADS Transcription Factor SEPALLATA3: Integration of Developmental and Hormonal Pathways in the Arabidopsis FlowerPLoS Biology, 7
J. Muiño, K. Kaufmann, R. Ham, G. Angenent, P. Krajewski (2011)
ChIP-seq Analysis in R (CSAR): An R package for the statistical detection of protein-bound genomic regionsPlant Methods, 7
Toshiro Ito, K. Ng, T. Lim, Hao Yu, E. Meyerowitz (2007)
The Homeotic Protein AGAMOUS Controls Late Stamen Development by Regulating a Jasmonate Biosynthetic Gene in Arabidopsis[W]The Plant Cell Online, 19
Xianwu Zheng, Jianhua Zhu, A. Kapoor, Jian‐Kang Zhu (2007)
Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencingThe EMBO Journal, 26
E. Meyerowitz, David Smyth, J. Bowman (1989)
Abnormal flowers and pattern formation in floral development
Yinbo Gan, Chang Liu, Hao Yu, P. Broun (2007)
Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate, 134
J. Goethe (1973)
Versuch die Metamorphose der Pflanzen zu erklären
K. Mcbride, K. Summerfelt (1990)
Improved binary vectors for Agrobacterium-mediated plant transformationPlant Molecular Biology, 14
G. Smyth, T. Speed (2003)
Normalization of cDNA microarray data.Methods, 31 4
C. Smaczniak, R. Immink, J. Muiño, R. Blanvillain, M. Busscher, Jacqueline Busscher-Lange, Q. Dinh, Shujing Liu, A. Westphal, S. Boeren, F. Parcy, Lin Xu, Cristel Carles, G. Angenent, K. Kaufmann (2012)
Characterization of MADS-domain transcription factor complexes in Arabidopsis flower developmentProceedings of the National Academy of Sciences, 109
Diabetes-Ling Wu, E. Lim, F. Vaillant, M. Asselin-Labat, J. Visvader, G. Smyth (2010)
ROAST: rotation gene set tests for complex microarray experimentsBioinformatics, 26
F. Borges, Patrícia Pereira, R. Slotkin, R. Martienssen, Jörg Becker (2011)
MicroRNA activity in the Arabidopsis male germline.Journal of experimental botany, 62 5
G. Ditta, A. Pinyopich, P. Robles, S. Pelaz, M. Yanofsky (2004)
The SEP4 Gene of Arabidopsis thaliana Functions in Floral Organ and Meristem IdentityCurrent Biology, 14
H. Roslan, M. Salter, C. Wood, M. White, K. Croft, F. Robson, G. Coupland, J. Doonan, P. Laufs, A. Tomsett, Mark Caddick (2001)
Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana.The Plant journal : for cell and molecular biology, 28 2
D. Smyth, J. Bowman, E. Meyerowitz (1990)
Early flower development in Arabidopsis.The Plant cell, 2
J. Sundström, N. Nakayama, K. Glimelius, V. Irish (2006)
Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis.The Plant journal : for cell and molecular biology, 46 4
S. Davis (2006)
Faculty Opinions recommendation of Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis.
F. Borges, G. Gomes, Rui Gardner, N. Moreno, S. McCormick, J. Feijó, J. Becker (2008)
Comparative Transcriptomics of Arabidopsis Sperm Cells
E. Álvarez-Buylla, A. Garay (2012)
Faculty Opinions recommendation of AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins.
R. Yadav, T. Girke, S. Pasala, M. Xie, G. Reddy, E. Meyerowitz (2009)
Gene expression map of the Arabidopsis shoot apical meristem stem cell nicheProceedings of the National Academy of Sciences, 106
S. Wuest, Diarmuid Ó’Maoiléidigh, Liina Rae, Kamila Kwaśniewska, A. Raganelli, Katarzyna Hanczaryk, A. Lohan, B. Loftus, E. Graciet, F. Wellmer (2012)
Molecular basis for the specification of floral organs by APETALA3 and PISTILLATAProceedings of the National Academy of Sciences, 109
D. Honys, D. Twell (2004)
Transcriptome analysis of haploid male gametophyte development in ArabidopsisGenome Biology, 5
Brandon Le, Chen Cheng, Anhthu Bui, J. Wagmaister, Kelli Henry, J. Pelletier, Linda Kwong, Mark Belmonte, Ryan Kirkbride, S. Horvath, G. Drews, R. Fischer, J. Okamuro, J. Harada, R. Goldberg (2010)
Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factorsProceedings of the National Academy of Sciences, 107
T. Bailey, M. Bodén, Fabian Buske, M. Frith, Charles Grant, Luca Clementi, Jingyuan Ren, Wilfred Li, William Noble (2009)
MEME Suite: tools for motif discovery and searchingNucleic Acids Research, 37
K. Livak, Thomas Schmittgen (2001)
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.Methods, 25 4
H. Sakai, B. Krizek, S. Jacobsen, E. Meyerowitz (2000)
Regulation of SUP Expression Identifies Multiple Regulators Involved in Arabidopsis Floral Meristem DevelopmentPlant Cell, 12
L. Matías-Hernández, R. Battaglia, F. Galbiati, Marco Rubes, Christof Eichenberger, U. Grossniklaus, M. Kater, L. Colombo (2010)
VERDANDI Is a Direct Target of the MADS Domain Ovule Identity Complex and Affects Embryo Sac Differentiation in Arabidopsis[W]Plant Cell, 22
S. Pelaz, R. Tapia-López, E. Álvarez-Buylla, M. Yanofsky (2001)
Conversion of leaves into petals in ArabidopsisCurrent Biology, 11
J. Larkin, D. Oppenheimer, A. Lloyd, E. Paparozzi, M. Marks (1994)
Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA Genes in Arabidopsis Trichome Development.The Plant cell, 6
S. Liljegren, G. Ditta, Y. Eshed, Beth Savidge, J. Bowman, M. Yanofsky (2000)
SHATTERPROOF MADS-box genes control seed dispersal in ArabidopsisNature, 404
Hume Stroud, Maxim Greenberg, S. Feng, Yana Bernatavichute, S. Jacobsen (2013)
Comprehensive Analysis of Silencing Mutants Reveals Complex Regulation of the Arabidopsis MethylomeCell, 152
J. Bowman, D. Smyth, E. Meyerowitz (1989)
Genes directing flower development in Arabidopsis.The Plant cell, 1
Beth Savidge, Steven Rounsley, M. Yanofsky (1995)
Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes.The Plant cell, 7
Hee‐Ju Yu, Pat Hogan, V. Sundaresan (2005)
Analysis of the Female Gametophyte Transcriptome of Arabidopsis by Comparative Expression Profiling1[W]Plant Physiology, 139
E. Romanel, C. Schrago, R. Couñago, C. Russo, M. Alves-Ferreira (2009)
Evolution of the B3 DNA Binding Superfamily: New Insights into REM Family Gene DiversificationPLoS ONE, 4
K. Goto, E. Meyerowitz (1994)
Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA.Genes & development, 8 13
Levi Yant, J. Mathieu, T. Dinh, Felix Ott, C. Lanz, Heike Wollmann, Xuemei Chen, M. Schmid (2010)
Orchestration of the Floral Transition and Floral Development in Arabidopsis by the Bifunctional Transcription Factor APETALA2[W][OA]Plant Cell, 22
Bo Sun, Yifeng Xu, K. Ng, Toshiro Ito (2009)
A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem.Genes & development, 23 15
Michael Neff, Joseph Neff, Joanne Chory, Alan Pepper (1998)
dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics.The Plant journal : for cell and molecular biology, 14 3
J. Riechmann, B. Krizek, E. Meyerowitz (1996)
Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS.Proceedings of the National Academy of Sciences of the United States of America, 93 10
Y. Deveaux, A. Peaucelle, Gethin Roberts, E. Coen, R. Simon, Y. Mizukami, J. Traas, James Murray, J. Doonan, P. Laufs (2003)
The ethanol switch: a tool for tissue-specific gene induction during plant development.The Plant journal : for cell and molecular biology, 36 6
Matthew Ritchie, J. Silver, A. Oshlack, Melissa Holmes, Dileepa Diyagama, A. Holloway, G. Smyth (2007)
A comparison of background correction methods for two-colour microarraysBioinformatics, 23 20
Stéphanie Breuil-Broyer, P. Morel, Janice Almeida-Engler, V. Coustham, I. Negrutiu, C. Trehin (2004)
High-resolution boundary analysis during Arabidopsis thaliana flower development.The Plant journal : for cell and molecular biology, 38 1
S. Schellmann, S. Schellmann, A. Schnittger, A. Schnittger, V. Kirik, V. Kirik, T. Wada, K. Okada, A. Beermann, J. Thumfahrt, G. Jürgens, M. Hülskamp (2002)
TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in ArabidopsisThe EMBO Journal, 21
T. Honma, K. Goto (2001)
Complexes of MADS-box proteins are sufficient to convert leaves into floral organsNature, 409
T. Jack, Laura Brockman, E. Meyerowitz (1992)
The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamensCell, 68
(2008)
Microarray background correction: maximum likelihood estimation for the normal–exponential convolutionBiostatistics (Oxford, England), 10
John Bowman, David Smyth, E. Meyerowitz (1991)
Genetic interactions among floral homeotic genes of Arabidopsis.Development, 112 1
M. Dornelas, C. Patreze, G. Angenent, R. Immink (2011)
MADS: the missing link between identity and growth?Trends in plant science, 16 2
Shucai Wang, S. Kwak, Qingning Zeng, B. Ellis, Xiao-Ya Chen, J. Schiefelbein, Jin‐Gui Chen (2007)
TRICHOMELESS1 regulates trichome patterning by suppressing GLABRA1 in Arabidopsis, 134
F. Wellmer, J. Riechmann, M. Alves-Ferreira, E. Meyerowitz (2004)
Genome-Wide Analysis of Spatial Gene Expression in Arabidopsis FlowersThe Plant Cell Online, 16
E. Meyerowitz, D. Smyth, J. Bowman (1989)
Abnormal flowers and pattern formation in floralDevelopment, 106
M. Schmid, T. Davison, Stefan Henz, U. Pape, Monika Demar, M. Vingron, B. Scholkopf, D. Weigel, J. Lohmann (2005)
A gene expression map of Arabidopsis thaliana developmentNature Genetics, 37
C. Gustafson-Brown, Beth Savidge, M. Yanofsky (1994)
Regulation of the arabidopsis floral homeotic gene APETALA1Cell, 76
Julie Law, S. Jacobsen (2010)
Establishing, maintaining and modifying DNA methylation patterns in plants and animalsNature Reviews Genetics, 11
V. Irish, I. Sussex (1990)
Function of the apetala-1 gene during Arabidopsis floral development.The Plant cell, 2
R. Sablowski (2010)
Genes and functions controlled by floral organ identity genes.Seminars in cell & developmental biology, 21 1
Toshiro Ito, F. Wellmer, Hao Yu, P. Das, Natsuko Ito, M. Alves-Ferreira, J. Riechmann, E. Meyerowitz (2004)
The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESSNature, 430
M. Mandel, C. Gustafson-Brown, Beth Savidge, M. Yanofsky (1992)
Molecular characterization of the Arabidopsis floral homeotic gene APETALA1Nature, 360
A. Schmidt, Samuel Wuest, K. Vijverberg, C. Baroux, Daniela Kleen, U. Grossniklaus (2011)
Transcriptome Analysis of the Arabidopsis Megaspore Mother Cell Uncovers the Importance of RNA Helicases for Plant Germline DevelopmentPLoS Biology, 9
G. Smyth (2011)
Statistical Applications in Genetics and Molecular Biology Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments
K. Kaufmann, F. Wellmer, J. Muiño, Thilia Ferrier, S. Wuest, Vijaya Kumar, Antonio Serrano-Mislata, F. Madueño, P. Krajewski, E. Meyerowitz, G. Angenent, J. Riechmann (2010)
Orchestration of Floral Initiation by APETALA1Science, 328
S. Hueber, I. Lohmann (2008)
Shaping segments: Hox gene function in the genomic ageBioEssays, 30
Y. Benjamini, Y. Hochberg (1995)
Controlling the false discovery rate: a practical and powerful approach to multiple testingJournal of the royal statistical society series b-methodological, 57
S. Durinck, James Bullard, P. Spellman, S. Dudoit (2009)
GenomeGraphs: integrated genomic data visualization with RBMC Bioinformatics, 10
E. Coen, E. Meyerowitz (1991)
The war of the whorls: genetic interactions controlling flower developmentNature, 353
M. Yanofsky, Hong Ma, J. Bowman, G. Drews, K. Feldmann, E. Meyerowitz (1990)
The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factorsNature, 346
K. Edwards, C. Johnstone, C. Thompson (1991)
A simple and rapid method for the preparation of plant genomic DNA for PCR analysis.Nucleic acids research, 19 6
The transcription factor AGAMOUS mediates the specification of reproductive floral organs by controlling the expression of a large number of genes with regulatory functions involved in a multitude of developmental processes. Together with other floral organ identity factors, it contributes to the suppression of the leaf development program through the direct suppression of key regulatory genes.
The Plant Cell – Oxford University Press
Published: Jul 2, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.