Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Bacterial solute transport proteins in their lipid environment

Bacterial solute transport proteins in their lipid environment AbstractThe cytoplasmic membrane of bacteria is a selective barrier that restricts entry and exit of solutes. Transport of solutes across this membrane is catalyzed by specific membrane proteins. Integral membrane proteins usually require specific lipids for optimal activity and are inhibited by other lipid species. Their activities are also sensitive to the lipid bilayer dynamics and physico-chemical state. Bacteria can adapt to changes in the environments (respective temperature, hydrostatic pressure, and pH) by altering the lipid composition of the membrane. Homeoviscous adaptation results in the maintenance of the liquid-crystalline phase through alterations in the degree of acyl chain saturation and branching, acyl chain length and the sterol content of the membrane. Homeophasic adaptation prevents the formation of non-bilayer phases, which would disrupt membrane organization and increase permeability. A balance is maintained between the lamellar phase, preferring lipids, and those that adopt a non-bilayer organization. As a result, the membrane proteins are optimally active under physiological conditions. The molecular basis of lipid-protein interactions is still obscure. Annular lipids stabilize integral membrane proteins. Stabilization occurs through electrostatic and possibly other interactions between the lipid headgroups and the charged amino acid residues close to the phospholipid-water interface, and hydrophobic interactions between the fatty acyl chains and the membrane-spanning segments. Reconstitution techniques allow manipulation of the lipid composition of the membrane in a way that is difficult to achieve in vivo. The physical characteristics of membrane lipids that affect protein-mediated transport functions have been studied in liposomal systems that separate an inner and outer compartment. The activity of most transport proteins is modulated by the bulk physical characteristics of the lipid bilayer, while specific lipid requirements appear rare. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png FEMS Microbiology Reviews Oxford University Press

Bacterial solute transport proteins in their lipid environment

Loading next page...
 
/lp/oxford-university-press/bacterial-solute-transport-proteins-in-their-lipid-environment-vPA3JCRLXy

References (135)

Publisher
Oxford University Press
Copyright
© 1993 Federation of European Microbiological Societies
ISSN
0168-6445
eISSN
1574-6976
DOI
10.1111/j.1574-6976.1993.tb00024.x
pmid
8268004
Publisher site
See Article on Publisher Site

Abstract

AbstractThe cytoplasmic membrane of bacteria is a selective barrier that restricts entry and exit of solutes. Transport of solutes across this membrane is catalyzed by specific membrane proteins. Integral membrane proteins usually require specific lipids for optimal activity and are inhibited by other lipid species. Their activities are also sensitive to the lipid bilayer dynamics and physico-chemical state. Bacteria can adapt to changes in the environments (respective temperature, hydrostatic pressure, and pH) by altering the lipid composition of the membrane. Homeoviscous adaptation results in the maintenance of the liquid-crystalline phase through alterations in the degree of acyl chain saturation and branching, acyl chain length and the sterol content of the membrane. Homeophasic adaptation prevents the formation of non-bilayer phases, which would disrupt membrane organization and increase permeability. A balance is maintained between the lamellar phase, preferring lipids, and those that adopt a non-bilayer organization. As a result, the membrane proteins are optimally active under physiological conditions. The molecular basis of lipid-protein interactions is still obscure. Annular lipids stabilize integral membrane proteins. Stabilization occurs through electrostatic and possibly other interactions between the lipid headgroups and the charged amino acid residues close to the phospholipid-water interface, and hydrophobic interactions between the fatty acyl chains and the membrane-spanning segments. Reconstitution techniques allow manipulation of the lipid composition of the membrane in a way that is difficult to achieve in vivo. The physical characteristics of membrane lipids that affect protein-mediated transport functions have been studied in liposomal systems that separate an inner and outer compartment. The activity of most transport proteins is modulated by the bulk physical characteristics of the lipid bilayer, while specific lipid requirements appear rare.

Journal

FEMS Microbiology ReviewsOxford University Press

Published: Nov 1, 1993

There are no references for this article.