Treatment of recurrent Clostridium difficile colitis: a narrative review

Treatment of recurrent Clostridium difficile colitis: a narrative review Abstract Clostridium difficile is a gram-positive, spore-forming, obligate anaerobic bacillus that was originally isolated from the stool of a healthy neonate in 1935. In high-income countries, C. difficile is the most common cause of infectious diarrhoea in hospitalized patients. The incidence of C. difficile infection in the USA has increased markedly since 2000, with hospitalizations for C. difficile infections in non-pregnant adults doubling between 2000 and 2010. Between 20% and 35% of patients with C. difficile infection will fail initial antibiotic treatment and, of these, 40–60% will have a second recurrence. Recurrence of C. difficile infection after initial treatment causes substantial morbidity and is a major burden on health care systems. In this article, current treatments for recurrent C. difficile infection are reviewed and future directions explored. These include the use of antibiotics, probiotics, donor faecal transplants, anion resins, secondary bile acids or anti-toxin antibodies. Clostridium difficile, recurrent infection, faecal microbiota transplant, anion-binding resins, monoclonal antibodies, secondary bile acid Introduction Clostridium difficile is a gram-positive, spore-forming, obligate anaerobic bacillus that was originally isolated from the stool of a healthy neonate in 1935 [1]. It was first identified as a major infectious cause of antibiotic-associated diarrhoea in 1978 [2]. In high-income countries, it is the most common cause of infectious diarrhoea in hospitalized patients [3,4]. The endospores from C. difficile are similar to those of Bacillus anthracis and Clostridium perfringens, in that they are impervious to desiccation, temperature fluxes, freezing, irradiation and many antiseptic solutions including alcohol-based hand gels and quaternary ammonium-based cleaning agents. C. difficile spores are spread by the faecal–oral route, hand-to-hand contact and also by air-borne environmental dispersal in hospital wards [5]. Epidemiology of C. difficile infection (CDI) The incidence of C. difficile infection (CDI) in the USA has increased markedly since 2000, with hospitalizations for CDI in non-pregnant adults doubling between 2000 and 2010 [6]. Based on data from US death certificates, it is the leading cause of gastroenteritis-associated mortality, with estimated deaths of 14 000 in 2007 [7], 29 000 in 2011 [6] and 44 500 in 2014 [8]. Data from the Center for Disease Control and Prevention for 2011 showed an annual toll in US health care facilities that was estimated to be 453 000 cases, 83 000 recurrences and 15 000 deaths, with an estimated annual cost of approximately $US40 billion [9]. Excess health care costs due to CDI have been estimated at $US4.8 billion dollars for acute care facilities alone [10]. Most CDI cases present during or shortly after antimicrobial use [11–13], although the risk can persist for up to 90 days [14,15]. Clindamycin, other macrolides, third-generation cephalosporins, penicillins and fluoroquinolones are the antibiotics most frequently associated with CDI [16]. Use of such broad-spectrum antibiotics leads to increased patient susceptibility to CDI infection and decreased ‘herd immunity’, particularly in health care facilities such as hospitals and nursing homes. C. difficile has been found to have a large number of mobile genetic elements within its genome, inserted during its phylogenetic evolution. Conjugative transposons and bacteriophages allow acquisition of antibiotic resistance through horizontal transfer from other genetically unrelated bacteria [17]. Antibiotic selection pressure provides antibiotic resistant C. difficile strains with a competitive advantage over the normal host intestinal microbiota. The three most common C. difficile North American Pulsed-field-type (NAP) strains found across 10 geographic regions in the USA in 2009–11 were NAP1/UK Ribotype (RT) 027 (28%), NAP4/RT014 (10.2%) and NAP11/RT106 (9.1%) [6]. The three most common strains in the Scottish CDI epidemic of 2007–08 were NAP1/RT027 (12.8%), NAP 11/RT106 (38.7%) and NAP2/001(24.5%), all three of which showed resistance to cefotaxime, clindamycin, erythromycin, moxifloxacin and levofloxacin, compared to other less virulent strains [18]. Overall, 3174 CDI cases were recorded between December 2007 and May 2008 at 38 Scottish hospitals, with 285 deaths and a mortality rate of 9% [18]. Hypervirulent C. difficile Ribotype 027 strain The hypervirulent NAP1, PCR ribotype 027 strain is characterized by high-level fluoroquinolone resistance, efficient sporulation, enhanced cytotoxicity, markedly high toxin production [19,20] and a mortality rate three times higher than less virulent strains (such as the 001 or 014 ribotypes) [21,22]. This is related to C. difficile NAP1 acquiring binary toxin (CDT) production from C. perfringens and mutational loss of the toxin repressor gene tcdC, which is the regulator for C. difficile exotoxin A and B transcription and synthesis. Toxin A (TcdA) causes increased intestinal permeability and fluid secretion, and Toxin B (TcdB) is cytotoxic, causing colonic inflammation [15]. This occurs through toxin inactivation of host intestinal G-proteins of the Rho and ras families via glucosylation. NAP1 strains can synthesize 16 times more Toxin A and 23 times more Toxin B than less virulent strains, leading to increased cytotoxicity and disease severity [23]. Patients with NAP1 CDI are more likely to develop fulminant pseudomembranous colitis, toxic megacolon and multi-organ failure (MODS) and require emergency colectomy [22,24,25]. Systemic absorption of TcdB appears to be more important than TcdA in contributing to extra-intestinal damage, host pro-inflammatory responses and systemic toxaemia in severe CDI [26]. Patients infected with C. difficile strains producing binary toxin have a 60% greater mortality than those infected with binary toxin-deficient strains [23]. Initial CDI treatment Current recommendations for treatment of initial CDI include oral metronidazole or vancomycin for 10–14 days for mild or moderate disease, as well as cessation of antibiotic therapy that may have predisposed to the infection. For severe infections, oral vancomycin (± IV metronidazole) or oral fidaxomicin have been recommended [16]. In patients with a paralytic ileus, colonic diversion or dilated colon, rectal vancomycin may be a useful alternative to oral administration [15]. Recurrent CDI Between 20% and 35% of patients with CDI will fail initial antibiotic treatment [27–30] and, of these, 40–60% will have a second recurrence [31,32]. The majority of recurrences are due to relapses of CDI with the original strain rather than re-infection with a different strain [15]. Resistance to vancomycin or metronidazole is not considered a factor in recurrent CDI, but such antibiotics may contribute to continued intestinal dysbiota. Recurrent infection is more common in older patients (>65 years), females, Caucasian patients, those with current antibiotic use, concomitant use of proton pump inhibitors and more severe initial disease [6,33]. The presence of comorbidities, anti-neoplastic chemotherapy, inadequate IgG antibody response to Toxin A after initial episode, inflammatory bowel disease, organ transplantation, chronic kidney disease, hypogammaglobulinaemia, immunodeficiency and exposure to an infant carrier or infected adult have also been recognized as risk factors [34–37]. The contribution of proton pump inhibitors (PPIs) to CDI remains unclear. C. difficile spores are resistant to gastric acid, but vegetative forms are susceptible. In community-acquired CDI patients, PPI exposure was observed in 31% of patients with CDI, with no exposure to antibiotics [15]. There have been reports of increased CDI risk with PPIs [38]; however, other studies have reported no increase in risk following adjustment for co-existent conditions [39–41]. Health care costs in recurrent CDI In a recent comprehensive analysis of hospital costs associated with recurrent CDI, Rodrigues et al. found that each recurrent CDI patient had an average of 4.4 stool tests for C. difficile toxin and received an average of 2.5 prescriptions for oral vancomycin. Most patients with recurrent CDI (84%) required hospitalization and 6% required urgent total colectomy. The total mean cost per patient was US$34 104, comprising hospitalization (68%), surgery (20%) and drug treatment (8%) costs. When applied to US national costs associated with rCDI, an annual cost of US$2.8 billion was extrapolated [42]. Treatment of recurrent CDI Antibiotic therapy The management of an initial CDI recurrence includes repeat administration of either oral metronidazole or vancomycin for 10–14 days. This achieves sustained cure rates in only 50% of patients [37,43]. The use of metronidazole is not recommended beyond the first CDI recurrence due to the risk of azole metabolite neurotoxicity [44]. Second recurrences may be treated by fidaxomicin or by a tapered, pulsed vancomycin regime [16]. Fidaxomicin is a poorly absorbed, orally administered macrolide antibiotic that is bactericidal towards C. difficile as compared to metronidazole and vancomycin, which are bacteriostatic [44]. Fidaxomicin has a narrower spectrum of antimicrobial activity than first-line antibiotic therapy, which results in less disruption of the normal gut flora. In a randomized–controlled trial (RCT), it had a similar cure rate but a significantly lower rate of recurrence than treatment with vancomycin (13% vs 24%), although this was in non-NAP Type 1 strains [45]. Fidaxomicin is considerably more expensive than vancomycin, and may have less activity against NAP1 CDI [44]. Rifaximin, another rifamycin, has also been tested in small case studies [46,47]. Stool transplant The human gut has been estimated to harbour over 160 bacterial species and greater than 1014 individual bacteria, the majority of which exist within the colon [48]. Antibiotics diminish specific commensal species, which usually suppress the growth of gut pathogens, allowing uninhibited growth of pathogens such as C. difficile [49,50]. Butyrate-producing bacteria are depleted in CDI, including Ruminococcaceae and Lachnospiraceae families. Butyrate is a short-chain fatty acid (SCFA). SCFAs are important in host energy production, intestinal epithelial cell homeostasis, immune function and normal gut microbial growth [51]. Recurrent C. difficile has furthermore been associated with a reduced number of Bacteroidetes and Firmicutes, both dominant gut flora [52]. Re-implanting such strains via faecal transplantation from healthy individuals can restore the normal gut microbial biodiversity, community structure and metabolomic functional profiles. Faecal microbiota transplant (FMT) substantially increases the amounts of secondary bile acids and restores SCFA production by gut microbiota [51]. Mean cure rates in recurrent CDI of 91–96% can be achieved with FMT, indicating that donor faecal transplantation is effective in treating recurrent disease after initial antibiotic therapy [52–55]. Larger longitudinal studies are required to assess regulatory concerns and long-term adverse events in patients after FMT [56]. A variety of routes of administration of FMT have been reported. To date, the best mode of treatment is still being determined [57]. Postigo and Kim reported a pooled analysis that indicated a marginally improved response, although not statistically significant, for nasogastric administration of donor faeces over colonoscopic application (93% vs 85%) [58]. In a 2014 systematic review of different routes of FMT, diarrhoea resolution rates varied according to the site of infusion: 81% in the stomach; 86% in the duodenum/jejunum; 93% in the caecum/ascending colon; and 84% in the distal colon [59]. Case series have reported excellent resolution rates following rectal enema [57,60,61] or colonoscopic administration [62–67]. Colonoscopic administration allows direct application throughout the colon and also terminal ileum where C. difficile can be found. However, it involves either inpatient or outpatient use of endoscopy facilities and must be undertaken with caution to minimize the risk of perforation in an already diseased colon. In addition, efficacy of this form of administration may also depend on the protocol used to cleanse the colon prior to application. Bowel preparations similar to those used prior to colonoscopy may reduce the density of C. difficile organisms including the metabolically inactive spores [65]. Application via a nasogastric or nasojejunal feeding tube allows delivery to the small bowel, with subsequent passage downstream to the distal ileum and colon without pre-preparation of the bowel. van Nood et al., in a landmark RCT, found a single nasoduodenal infusion of donor faeces was associated with a significantly higher rate of resolution of recurrent CDI compared to a vancomycin regime with or without bowel lavage (81% vs 23% and 31%) [52]. Oral preparations of frozen faecal microbial transplant capsules have also been studied with excellent results reported. Youngster et al. reported a sustained cure after a single oral administration of 30 frozen donor faecal capsules in 147/180 patients with recurrent or refractory CDI [68]. A second administration was successful in 17/26 patients who relapsed, resulting in an overall resolution of CDI diarrhoea in 91% of patients. Advantages of this method include outpatient administration of capsules and no requirement for instrumentation of the digestive tract. FMT is also more cost-effective in recurrent CDI than oral vancomycin or fidaxomicin [69–71]. In addition to FMT, research is continuing on a defined Microbial Ecosystem Therapeutic (MET-1). This uses a defined microbial population of 33 different bacterial species, prepared under laboratory conditions, which is then administered. MET has emerged due, in part, to the safety concerns in FMT of potential transfer of unidentified pathogens to the recipient and the logistics of screening suitable FMT donors. Petrof et al. reported that one MET preparation, derived from the faeces of a healthy human volunteer, was successfully used to cure patients with recurrent CDI [72]. Further research into MET-1 has suggested it may be effective as a mode of recurrent CDI prevention. MET-1 decreased both local and systemic inflammation and the overall amount of detectable intestinal TcdA in a mouse model. This occurred despite there being no decrease in the intestinal C. difficile burden in the mouse stool [73]. Probiotics The altered composition of gut microbiota in the setting of C. difficile infection has raised interest in the potential role of probiotics. Treatment aims to re-colonize and restore the diversity of flora following the disruption due to antibiotic treatment and C. difficile overgrowth [74]. Probiotics may act through a number of mechanisms. These include temporary colonization, production of bactericidal acids and peptides, and competition with C. difficile for nutrients and epithelial adhesion. Lactobacilli have been shown to suppress growth of C. difficile in hamsters [75]. Probiotic bacteria produce lactic acid, which lowers digestive tract pH, as well as bacteriocins, both of which can inhibit growth of C. difficile [76]. They may disrupt the binding of C. difficile Toxins A and B to intestinal epithelial cells and stimulate host IgA anti-toxin production [15,77]. Bifidobacterium longum and breve have been shown to reduce the cytotoxic effect of C. difficile on the human intestinal epithelial cell line HT29 [78]. This was related to the specific reduction of TcdB levels, particularly by B. longum. Some studies have suggested a benefit from probiotics in the treatment or prevention of C. difficile infection [79–81]. A three-strain combination of Lactobacillus acidophilus, L. casei and L. rhamnosus (Bio-K+) was used to prevent primary CDI in 45 000 adult patients given any antibiotic. Patients were monitored for over 10 years and a 39% decrease in the rate of CDI cases was found [56]. Currently, the most promising agents appear to be a combination of L. acidophilus and L. casei, other mixed species, Saccharomyces boulardii or L. rhamnosus [82]. The tropical yeast S. boulardii produces a specific protease which cleaves TcdA and may also inactivate TcdA receptors [77,83]. A RCT of recurrent CDI treatments showed S. boulardii (1 g/day for 28 days) in combination with high-dose oral vancomycin (2 g/day for 10 days) was effective in reducing the CDI recurrence rate to 16.7% as compared to high-dose vancomycin/placebo (50%, p = 0.05). It was not effective in combination with low-dose vancomycin or metronidazole, as C. difficile was not completely cleared in these patients [28,44]. Allen et al., in a large RCT from 2013, showed that probiotics did not prevent C. difficile recurrence [84]. The 2016 Australasian Society of Infectious Diseases (ASID) [85] and the Society for Healthcare Epidemiology of America (SHEA) 2010 Guidelines [86] do not recommend probiotics be used as a preventative or adjunctive treatment in any C. difficile management algorithm. A recent meta-analysis, however, demonstrated its efficacy in primary CDI prophylaxis in patients receiving systemic antibiotic treatment [87]. Hence, probiotics may be considered for this indication by future Infectious Diseases Society guidelines. The use of probiotics for CDI prevention and FMT for recurrent CDI treatment has led to interest in intestinal small molecule inhibitors and bacteriocins. These are produced by commensal intestinal microbiota and can inhibit toxigenic C. difficile. Ebselen and methyl cholate are two small molecule inhibitors of TcdB [88]. Examples of bacteriocins include thuricin CD, nisin, lacticin 3147, actagardine, mutacin and diffocins [89]. Nisin and Lacticin 3147 are produced by Lactococcus lactis and have efficacy against C. difficile that is comparable or superior to vancomycin or metronidazole. Their application is limited by their undesirable effects on the commensal gut microbiome. Studies are proceeding of bioengineered bacteriocins, which have enhanced activity against C. difficile RT027 and fewer effects on normal gut flora [89]. Re-colonization with non-toxigenic C. difficile strains Not all strains of C. difficile produce toxins, and thus re-colonization with non-toxigenic strains has been investigated as a potential treatment. Gerding et al. reported the results of a phase II randomized, double-blind, placebo-controlled trial that involved 168 patients [90]. They found a preparation containing the non-toxigenic C. difficile strain M3 (VP20621; NTCD-M3) was effective, well tolerated and appeared to be safe, with few adverse events reported. CDI recurrence occurred in only 11% of patients receiving the preparation compared to 30% taking the placebo. Furthermore, only 2% of patients who were successfully colonized with the NTCD-M3 strain suffered recurrence, compared to 31% receiving the placebo. There are, however, potential areas of concern with this line of treatment—specifically, the occurrences of horizontal transfer of the pathogenicity locus (PaLoc) containing the genes encoding TcdA and TcdB between remnant toxigenic strains and introduced non-toxigenic strains. This has been proven experimentally by Brouwer et al. [91] and has also occurred in circulating C. difficile populations from a single geographic location [92]. Further research is therefore required into the circumstances whereby transfer of the PaLoc occurs before re-colonization with non-toxigenic C. difficile spores could be used as a viable treatment modality. Primary bile acids and anion-binding resins The use of anion-binding resins has not been shown to be superior to standard antibiotic treatment in CDI, but may have a role as an adjunctive therapy. Up to 80% of primary bile salts (e.g. taurocholate, glycocholate and cholate) excreted in the bile are converted to secondary bile salts (e.g. deoxycholate) by normal intestinal flora. For example, bacterial 7α-dehydroxylase converts taurocholate to deoxycholate. Taurocholate can also be converted to chenodeoxycholate by Bacteroides species with 12α-dehydroxylase activity [93]. Some primary bile salts such as cholate stimulate C. difficile spores to germinate in the small intestine and caecum, whilst the primary bile salt chenodeoxycholate inhibits spore germination and outgrowth of vegetative cells in the colon. Deoxycholate still allows spores to germinate but vegetative cells cannot grow. In broad-spectrum antibiotic-treated hosts, the reduction in normal bacterial flora results in lower levels of commensal 7α-dehydroxylase and higher concentrations of primary bile salts. This allows C. difficile spores to rapidly germinate and the resulting vegetative cells to grow and subsequently produce exotoxins [94]. Giel et al. compared the effects of intestinal and caecal extracts from untreated and antibiotic-treated mice and related this to cholestyramine administration. Caecal contents from the antibiotic-treated mice stimulated colony formation of C. difficile spores and exotoxin B levels by 10 000-fold after 24 hours [94]. Cholestyramine decreased the ability of taurocholate to germinate C. difficile spores by 200-fold. When treated with cholestyramine, there was a decrease in the ability of the intestinal extracts from the clindamycin-treated mice to stimulate colony formation [94]. Whilst cholestyramine resin is not effective as a primary therapy [95], potential exists for its adjunctive use as a primary bile acid sequestrant in human CDI [96]. One disadvantage of anion resins is that they also bind luminal vancomycin [95]. Tolevamer is an anionic, soluble polystyrene compound shown to sequester CDI Toxins A and B. It was associated with a lower CDI recurrence rate compared to oral vancomycin [97]. Oral vancomycin 500 mg/day was superior to 6 g/day and 3 g/day of oral Tolevamer in time for resolution of diarrhoea in moderate to severe CDI (2.0, 2.5 and 4.0 days, respectively) and in efficacy (91%, 83% and 67% respective resolution). A more recent study showed that Tolevamer was inferior to both metronidazole and vancomycin in analyses of both primary and recurrent CDI, concomitant use of antibiotics, CDI severity and infection with hypervirulent NAP1 CDI strain. However, in the small cohort of patients who did respond to Tolevamer, the CDI recurrence rate was 4.5%, which was significantly better than recurrence rates for metronidazole (23.0%) or vancomycin (20.6%) [98]. Synthetic bile salt analogues Given the ability of taurocholate to bind and activate C. difficile spores, it has been possible to test taurocholate agonists and antagonists of C. difficile spore germination [99]. One of the analogues, CAmSA, was found to be a strong competitive inhibitor of taurocholate-mediated C. difficile spore germination. It was active at concentrations approximately 275-fold lower than taurocholate and was four times more active than the natural inhibitor chenodeoxycholate [99]. When tested in a mouse model, CAmSA was able to prophylactically prevent murine CDI caused by two different CD strains and could be titrated to ameliorate CDI signs in a dose-dependent manner [100]. This raises the possibility of its use in prophylaxis against CDI. Secondary bile acid Recent research has highlighted the importance of secondary bile acids in the pathogenesis and potential treatment of CDI. A loss in microbially derived intestinal secondary bile acids can lead to increased susceptibility for CDI, particularly in hypervirulent strains [101]. Weingarden et al. reported that there were no secondary bile acids (lithocholate, deoxycholate) and an abundance of primary bile acids (taurocholate, cholate, chenodeoxycholate) in the faeces of recurrent CDI patients prior to FMT [102]. After successful FMT, there were no faecal primary bile salts and the levels of secondary bile salts were restored to those of healthy persons. It was shown that germination of spores was variable amongst C. difficile strains in response to primary bile acids, and was possibly related to expression of the spore germinant CspC. This is a C. difficile serine protease bile acid receptor that was most distinct in the NAP7/RT078 hypervirulent livestock-derived CDI strain [102]. Weingarden et al. subsequently reported that ursodeoxycholic acid (UDCA) inhibited both spore germination and vegetative growth of all C. difficile strains they tested [103]. UDCA is produced by microbial conversion of lithocholate in the colon. They suggested that oral UDCA may be useful in patients who were not suitable for FMT (e.g. recurrent CDI pouch ileitis) or were refractory to antibiotic and FMT treatment. Monoclonal antibodies The use of systemic monoclonal antibodies has been reported to decrease the rate of C. difficile recurrence [30,104]. Bezlotoxumab has been shown by X-ray crystallography to block the binding of Toxin B to host cells, thereby negating its action [105]. The initial double-blind RCT using IV antibodies against both Toxins A and B found the overall rate of recurrence of C. difficile infection was lower amongst patients treated with monoclonal antibodies versus placebo (7% vs 25%; p < 0.001). The recurrence rate among patients with the epidemic BI/NAP1/027 strain was 8% for the antibody group and 32% for the placebo group (p = 0.06). In the patients with more than one previous episode of CDI, respective recurrence rates after monoclonal antibody treatment versus placebo were 7% and 38% (p = 0.006) [30]. The subsequent MODIFY I and II trials showed that single-dose intravenous Bezlotoxumab in conjunction with standard oral antibiotic treatment resulted in a significantly lower (38%) rate of recurrent CDI infection than with placebo and standard antibiotic treatment alone [104]. The rate of recurrent CDI was even lower with Bezlotoxumab (51%) in patients >65 years of age. The initial CDI cure rates of the Bezlotoxumab/antibiotic and placebo/antibiotic-treated groups were similar in pooled data (80%). This is related to the rapid effect of standard antibiotic treatment-lowering Toxin B levels in the initial CDI episode. The protective effect of Bezlotoxumab against recurrent CDI was sustained for 12 weeks after administration. A single dose of monoclonal antibody was used due to the long half life (19 days). There was no benefit found with Actoxumab (a monoclonal antibody directed against Toxin A) alone, nor did its combination with Bezlotoxumab increase the efficacy of treatment [104]. This is despite previous epidemiological evidence that showed generation of endogenous anti-Toxin A IgG antibodies was protective against recurrent CDI [34]. The relative protective effect of host IgG antitoxins against Toxins A or B may also be species-specific [104]. The results of MODIFY I and II prompted the US Food and Drug Administration (FDA) to approve Bezlotoxumab in 2016 for use as secondary prevention for patients at a high risk of CDI recurrence (prior history of CDI and >65 years) [9,104]. Further research is still required at this stage to identify which patients will benefit most from Bezlotoxumab. Additional cost analyses will also need to be undertaken before such treatment becomes more widely used. The efficacy of a tetravalent vaccine with antibodies to CDI binary toxin in addition to Toxins A and B is still being evaluated [106]. Hyperimmune bovine colostrum (HBC) Colostrum is the initial milk produced by a lactating mammal following parturition. Bovine colostrum is known to be rich in immunoglobulins (particularly IgG), which are stable in the gastrointestinal tract. This can provide passive protection to the infant calf from environmentally acquired enteric pathogens such as rotavirus, Salmonella enterica, enterotoxigenic Escherichia coli, Clostridium difficile, C. perfringens and Cryptospridium parvum. By repeatedly inoculating a gestating cow with specific antigens, it is possible to stimulate the production of colostrum containing high concentrations of antigen-specific antibodies known as HBC. Recent research has investigated the potential of HBC to prevent or treat C. difficile. In 2015, Sponseller et al. demonstrated that HBC produced following inoculation of cows with recombinant mutants of Toxins A and B had the potential to be used in primary CDI treatment [107]. They developed a model of gnotobiotic piglets transplanted with normal human gut microbiota and then exposed to C. difficile. The piglets treated with non-immune colostrum developed symptoms of C. difficile colitis whereas those treated with HBC only suffered mild disease. More recently, a TcdB-specific HBC has been developed and investigated by Hutton et al. [108]. They demonstrated that administration of TcdB HBC alone or in combination with spore or vegetative cell-targeted colostrum prevented and treated CDI in mice and reduced recurrence by 67%. The production cost of colostrum IgG antibodies is less than intravenous monoclonal antibodies. This suggests that HBC may be a cost-effective future treatment for human enteric infections such as C. difficile colitis. Bacteriophage therapy C. difficile is known to produce biofilms, which consist of aggregates of cells embedded in a matrix of self-produced extracelllar polymetric substance (EPS) [109–111]. The matrix binds spores and vegetative cells and protects them from oxidative stress whilst enhancing their adhesion to abiotic surfaces [111]. This allows persistence and proliferation of C. difficile. Recent studies have investigated the therapeutic potential of bacteriophages (viruses that specifically infect bacteria). Nale et al., in 2016, studied the application of a four-phage cocktail on C. difficile ribotype 014/020 biofilms [112]. They found the phages prevented biofilm formation and penetrated established biofilms leading to lysis, plaque formation and a reduction in bacterial viability and biomass in vitro. They also reported an enhanced effect when used as an adjunct to vancomycin. This was undertaken in an animal model, but the results are promising for bacteriophage administration to become a future prophylactic and therapeutic intervention in human CDI and recurrent CDI. Conclusion Recurrence of CDI after initial treatment causes substantial morbidity and is a major burden on health care systems. There is good evidence that FMT for recurrent CDI is both clinically and cost-effective in achieving a permanent cure. Probiotics are readily available and may assist in prevention of relapse of infection, but further research is required in their role in recurrent CDI. Whilst anion-binding resins may not be first-line treatment, they may be of use in an adjunctive setting. Monoclonal antibodies have proven preventative effect in CDI relapse, and have thus been approved by the FDA. Ongoing research is currently underway into secondary bile acid treatments (UDCA) and development of multivalent toxin vaccines. The emergence of treatments that re-establish intestinal microbiota homeostasis and enhance host immunocompetence is therefore of great importance in the future prevention and treatment of recurrent CDI. Conflict of interest statement: none declared. References 1 Hall IC, O’Toole E. Intestinal flora in new-born infants: with a description of a new pathogenic anaerobe, Bacillius difficilis. Am J Dis Child  1935; 49: 390– 402. Google Scholar CrossRef Search ADS   2 Bartlett JG, Chang TW, Gurwith M et al.   Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. N Engl J Med  1978; 298: 531– 4. Google Scholar CrossRef Search ADS PubMed  3 Magill SS, Edwards JR, Bamberg W et al.  ; Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team. Multistate point-prevalence survey of health care-associated infections. N Engl J Med  2014; 370: 1198– 208. Google Scholar CrossRef Search ADS PubMed  4 Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol  2009; 7: 526– 36. Google Scholar CrossRef Search ADS PubMed  5 Best EL, Fawley WN, Parnell P et al.   The potential for airborne dispersal of Clostridium difficile from symptomatic patients. Clin Infect Dis  2010; 50: 1450– 7. Google Scholar CrossRef Search ADS PubMed  6 Lessa FC, Winston LG, McDonald LC. Emerging Infections Program C. difficile Surveillance Team. Burden of Clostridium difficile infection in the United States. N Engl J Med  2015; 372: 825– 34. Google Scholar CrossRef Search ADS PubMed  7 Hall AJ, Curns AT, McDonald LC et al.   The roles of Clostridium difficile and norovirus among gastroenteritis-associated deaths in the United States, 1999–2007. Clin Infect Dis  2012; 55: 216– 23. Google Scholar CrossRef Search ADS PubMed  8 Desai K, Gupta SB, Dubberke ER et al.   Epidemiological and economic burden of Clostridium difficile in the United States: estimates from a modeling approach. BMC Infect Dis  2016; 16: 303. Google Scholar CrossRef Search ADS PubMed  9 Bartlett JG. Bezlotoxumab—a new agent for Clostridium difficile infection. N Engl J Med  2017; 376: 381– 2. Google Scholar CrossRef Search ADS PubMed  10 Dubberke ER, Olsen MA. Burden of Clostridium difficile on the healthcare system. Clin Infect Dis  2012; 55 (Suppl 2): S88– 92. Google Scholar CrossRef Search ADS PubMed  11 Centers for Disease Control and Prevention (CDC). Severe Clostridium difficile-associated disease in populations previously at low risk—four states, 2005. MMWR Morb Mortal Wkly Rep  2005; 54: 1201– 5. PubMed  12 Dial S, Kezouh A, Dascal A et al.   Patterns of antibiotic use and risk of hospital admission because of Clostridium difficile infection. CMAJ  2008; 179: 767– 72. Google Scholar CrossRef Search ADS PubMed  13 Zar FA, Bakkanagari SR, Moorthi KM et al.   A comparison of vancomycin and metronidazole for the treatment of Clostridium difficile-associated diarrhea, stratified by disease severity. Clin Infect Dis  2007; 45: 302– 7. Google Scholar CrossRef Search ADS PubMed  14 Tedesco FJ. Pseudomembranous colitis: pathogenesis and therapy. Med Clin North Am  1982; 66: 655– 64. Google Scholar CrossRef Search ADS PubMed  15 Ofosu A. Clostridium difficile infection: a review of current and emerging therapies. Ann Gastroenterol  2016; 29: 147– 54. Google Scholar CrossRef Search ADS PubMed  16 Leffler DA, Lamont JT. Clostridium difficile infection. N Engl J Med  2015; 372: 1539– 48. Google Scholar CrossRef Search ADS PubMed  17 Sebaihia M, Wren BW, Mullany P et al.   The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet  2006; 38: 779– 86. Google Scholar CrossRef Search ADS PubMed  18 Lawes T, Lopez-Lozano JM, Nebot CA et al.   Effect of a national 4C antibiotic stewardship intervention on the clinical and molecular epidemiology of Clostridium difficile infections in a region of Scotland: a non-linear time-series analysis. Lancet Infect Dis  2017; 17: 194– 206. Google Scholar CrossRef Search ADS PubMed  19 Akerlund T, Persson I, Unemo M et al.   Increased sporulation rate of epidemic Clostridium difficile Type 027/NAP1. J Clin Microbiol  2008; 46: 1530– 3. Google Scholar CrossRef Search ADS PubMed  20 McDonald LC, Killgore GE, Thompson A et al.   An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med  2005; 353: 2433– 41. Google Scholar CrossRef Search ADS PubMed  21 Loo VG, Poirier L, Miller MA et al.   A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med  2005; 353: 2442– 9. Google Scholar CrossRef Search ADS PubMed  22 Warny M, Pepin J, Fang A et al.   Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet  2005; 366: 1079– 84. Google Scholar CrossRef Search ADS PubMed  23 Sun X, Hirota SA. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection. Mol Immunol  2015; 63: 193– 202. Google Scholar CrossRef Search ADS PubMed  24 Burnham CA, Carroll KC. Diagnosis of Clostridium difficile infection: an ongoing conundrum for clinicians and for clinical laboratories. Clin Microbiol Rev  2013; 26: 604– 30. Google Scholar CrossRef Search ADS PubMed  25 Koss K, Clark MA, Sanders DS et al.   The outcome of surgery in fulminant Clostridium difficile colitis. Colorectal Dis  2006; 8: 149– 54. Google Scholar CrossRef Search ADS PubMed  26 Carter GP, Chakravorty A, Pham Nguyen TA et al.   Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. MBio  2015; 6: e00551. Google Scholar CrossRef Search ADS PubMed  27 Aslam S, Hamill RJ, Musher DM. Treatment of Clostridium difficile-associated disease: old therapies and new strategies. Lancet Infect Dis  2005; 5: 549– 57. Google Scholar CrossRef Search ADS PubMed  28 Cornely OA, Miller MA, Louie TJ et al.   Treatment of first recurrence of Clostridium difficile infection: fidaxomicin versus vancomycin. Clin Infect Dis  2012; 55 (Suppl 2): S154– 61. Google Scholar CrossRef Search ADS PubMed  29 Kelly CP, LaMont JT. Clostridium difficile—more difficult than ever. N Engl J Med  2008; 359: 1932– 40. Google Scholar CrossRef Search ADS PubMed  30 Lowy I, Molrine DC, Leav BA et al.   Treatment with monoclonal antibodies against Clostridium difficile toxins. N Engl J Med  2010; 362: 197– 205. Google Scholar CrossRef Search ADS PubMed  31 McFarland LV, Elmer GW, Surawicz CM. Breaking the cycle: treatment strategies for 163 cases of recurrent Clostridium difficile disease. Am J Gastroenterol  2002; 97: 1769– 75. Google Scholar CrossRef Search ADS PubMed  32 McFarland LV, Surawicz CM, Greenberg RN et al.   A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA  1994; 271: 1913–1 8. Google Scholar CrossRef Search ADS PubMed  33 Garey KW, Sethi S, Yadav Y et al.   Meta-analysis to assess risk factors for recurrent Clostridium difficile infection. J Hosp Infect  2008; 70: 298– 304. Google Scholar CrossRef Search ADS PubMed  34 Kyne L, Warny M, Qamar A et al.   Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet  2001; 357: 189– 93. Google Scholar CrossRef Search ADS PubMed  35 Leav BA, Blair B, Leney M et al.   Serum anti-toxin B antibody correlates with protection from recurrent Clostridium difficile infection (CDI). Vaccine  2010; 28: 965– 9. Google Scholar CrossRef Search ADS PubMed  36 Chitnis AS, Holzbauer SM, Belflower RM et al.   Epidemiology of community-associated Clostridium difficile infection, 2009 through 2011. JAMA Intern Med  2013; 173: 1359– 67. Google Scholar CrossRef Search ADS PubMed  37 Leffler DA, Lamont JT. Treatment of Clostridium difficile-associated disease. Gastroenterology  2009; 136: 1899– 912. Google Scholar CrossRef Search ADS PubMed  38 Dial S, Delaney JA, Barkun AN et al.   Use of gastric acid-suppressive agents and the risk of community-acquired Clostridium difficile-associated disease. JAMA  2005; 294: 2989– 95. Google Scholar CrossRef Search ADS PubMed  39 Novack L, Kogan S, Gimpelevich L et al.   Acid suppression therapy does not predispose to Clostridium difficile infection: the case of the potential bias. PLoS One  2014; 9: e110790. Google Scholar CrossRef Search ADS PubMed  40 Pépin J, Saheb N, Coulombe MA et al.   Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis  2005; 41: 1254– 60. Google Scholar CrossRef Search ADS PubMed  41 Khanna S, Aronson SL, Kammer PP et al.   Gastric acid suppression and outcomes in Clostridium difficile infection: a population-based study. Mayo Clin Proc  2012; 87: 636– 42. Google Scholar CrossRef Search ADS PubMed  42 Rodrigues R, Barber GE, Ananthakrishnan AN. A comprehensive study of costs associated with recurrent Clostridium difficile infection. Infect Control Hosp Epidemiol  2017; 38: 196– 202. Google Scholar CrossRef Search ADS PubMed  43 Hu MY, Katchar K, Kyne L et al.   Prospective derivation and validation of a clinical prediction rule for recurrent Clostridium difficile infection. Gastroenterology  2009; 136: 1206– 14. Google Scholar CrossRef Search ADS PubMed  44 O’Horo JC, Jindai K, Kunzer B et al.   Treatment of recurrent Clostridium difficile infection: a systematic review. Infection  2014; 42: 43– 59. Google Scholar CrossRef Search ADS PubMed  45 Louie TJ, Miller MA, Mullane KM et al.   Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med  2011; 364: 422– 31. Google Scholar CrossRef Search ADS PubMed  46 Garey KW, Ghantoji SS, Shah DN et al.   A randomized, double-blind, placebo-controlled pilot study to assess the ability of rifaximin to prevent recurrent diarrhoea in patients with Clostridium difficile infection. J Antimicrob Chemother  2011; 66: 2850– 5. Google Scholar CrossRef Search ADS PubMed  47 Johnson S, Schriever C, Galang M et al.   Interruption of recurrent Clostridium difficile-associated diarrhea episodes by serial therapy with vancomycin and rifaximin. Clin Infect Dis  2007; 44: 846– 8. Google Scholar CrossRef Search ADS PubMed  48 Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol  1977; 31: 107– 33. Google Scholar CrossRef Search ADS PubMed  49 Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A  2011; 108 (Suppl 1): 4554– 61. Google Scholar CrossRef Search ADS PubMed  50 Jernberg C, Löfmark S, Edlund C et al.   Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J  2007; 1: 56– 66. Google Scholar CrossRef Search ADS PubMed  51 Carlucci C, Petrof EO, Allen-Vercoe E. Fecal microbiota-based therapeutics for recurrent Clostridium difficile infection, ulcerative colitis and obesity. EBioMedicine  2016; 13: 37– 45. Google Scholar CrossRef Search ADS PubMed  52 van Nood E, Vrieze A, Nieuwdorp M et al.   Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med  2013; 368: 407– 15. Google Scholar CrossRef Search ADS PubMed  53 Bakken JS. Fecal bacteriotherapy for recurrent Clostridium difficile infection. Anaerobe  2009; 15: 285– 9. Google Scholar CrossRef Search ADS PubMed  54 Tvede M, Rask-Madsen J. Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet  1989; 1: 1156– 60. Google Scholar CrossRef Search ADS PubMed  55 Agrawal M, Aroniadis OC, Brandt LJ et al.   The long-term efficacy and safety of fecal microbiota transplant for recurrent, severe, and complicated Clostridium difficile infection in 146 elderly individuals. J Clin Gastroenterol  2016; 50: 403– 7. Google Scholar PubMed  56 Culligan EP, Sleator RD. Advances in the microbiome: applications to Clostridium difficile infection. J Clin Med  2016; 5.pii: E83. Google Scholar CrossRef Search ADS PubMed  57 Kassam Z, Lee CH, Yuan Y et al.   Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol  2013; 108: 500– 8. Google Scholar CrossRef Search ADS PubMed  58 Postigo R, Kim JH. Colonoscopic versus nasogastric fecal transplantation for the treatment of Clostridium difficile infection: a review and pooled analysis. Infection  2012; 40: 643– 8. Google Scholar CrossRef Search ADS PubMed  59 Cammarota G, Ianiro G, Gasbarrini A. Fecal microbiota transplantation for the treatment of Clostridium difficile infection: a systematic review. J Clin Gastroenterol  2014; 48: 693– 702. Google Scholar CrossRef Search ADS PubMed  60 Bowden TA, Mansberger AR, Lykins LE. Pseudomembraneous enterocolitis: mechanism for restoring floral homeostasis. Am Surg  1981; 47: 178– 83. Google Scholar PubMed  61 Gustafsson A, Lund-Tønnesen S, Berstad A et al.   Faecal short-chain fatty acids in patients with antibiotic-associated diarrhoea, before and after faecal enema treatment. Scand J Gastroenterol  1998; 33: 721– 7. Google Scholar CrossRef Search ADS PubMed  62 Kelly CR, de Leon L, Jasutkar N. Fecal microbiota transplantation for relapsing Clostridium difficile infection in 26 patients: methodology and results. J Clin Gastroenterol  2012; 46: 145– 9. Google Scholar CrossRef Search ADS PubMed  63 Kelly CR, Khoruts A, Staley C et al.   Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection: a randomized trial. Ann Intern Med  2016; 165: 609– 16. Google Scholar CrossRef Search ADS PubMed  64 Khoruts A, Dicksved J, Jansson JK et al.   Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol  2010; 44: 354– 60. Google Scholar PubMed  65 Persky SE, Brandt LJ. Treatment of recurrent Clostridium difficile-associated diarrhea by administration of donated stool directly through a colonoscope. Am J Gastroenterol  2000; 95: 3283– 5. Google Scholar PubMed  66 Rohlke F, Surawicz CM, Stollman N. Fecal flora reconstitution for recurrent Clostridium difficile infection: results and methodology. J Clin Gastroenterol  2010; 44: 567– 70. Google Scholar CrossRef Search ADS PubMed  67 Yoon SS, Brandt LJ. Treatment of refractory/recurrent C. difficile-associated disease by donated stool transplanted via colonoscopy: a case series of 12 patients. J Clin Gastroenterol  2010; 44: 562– 6. Google Scholar CrossRef Search ADS PubMed  68 Youngster I, Mahabamunuge J, Systrom HK et al.   Oral, frozen fecal microbiota transplant (FMT) capsules for recurrent Clostridium difficile infection. BMC Med  2016; 14: 134. Google Scholar CrossRef Search ADS PubMed  69 Baro E, Galperine T, Denies F et al.   Cost-effectiveness analysis of five competing strategies for the management of multiple recurrent community-onset Clostridium difficile infection in France. PLoS One  2017; 12: e0170258. Google Scholar CrossRef Search ADS PubMed  70 Konijeti GG, Sauk J, Shrime MG et al.   Cost-effectiveness of competing strategies for management of recurrent Clostridium difficile infection: a decision analysis. Clin Infect Dis  2014; 58: 1507– 14. Google Scholar CrossRef Search ADS PubMed  71 Lapointe-Shaw L, Tran KL, Coyte PC et al.   Cost-effectiveness analysis of six strategies to treat recurrent Clostridium difficile infection. PLoS One  2016; 11: e0149521. Google Scholar CrossRef Search ADS PubMed  72 Petrof EO, Gloor GB, Vanner SJ et al.   Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome  2013; 1: 3. Google Scholar CrossRef Search ADS PubMed  73 Martz SL, Guzman-Rodriguez M, He SM et al.   A human gut ecosystem protects against C. difficile disease by targeting TcdA. J Gastroenterol  2017; 52: 452– 65. Google Scholar CrossRef Search ADS PubMed  74 Surawicz CM. Role of probiotics in antibiotic-associated diarrhea, Clostridium difficile-associated diarrhea, and recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol  2008; 42 (Suppl 2): S64– 70. Google Scholar CrossRef Search ADS PubMed  75 Naaber P, Mikelsaar M. Interactions between Lactobacilli and antibiotic-associated diarrhea. Adv Appl Microbiol  2004; 54: 231– 60. Google Scholar CrossRef Search ADS PubMed  76 Gill HS. Probiotics to enhance anti-infective defences in the gastrointestinal tract. Best Pract Res Clin Gastroenterol  2003; 17: 755– 73. Google Scholar CrossRef Search ADS PubMed  77 Castagliuolo I, Riegler MF, Valenick L et al.   Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infect Immun  1999; 67: 302– 7. Google Scholar PubMed  78 Valdés-Varela L, Alonso-Guervos M, García-Suárez O et al.   Screening of bifidobacteria and lactobacilli able to antagonize the cytotoxic effect of Clostridium difficile upon intestinal epithelial HT29 monolayer. Front Microbiol  2016; 7: 577. Google Scholar PubMed  79 Hempel S, Newberry SJ, Maher AR et al.   Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. JAMA  2012; 307: 1959– 69. Google Scholar CrossRef Search ADS PubMed  80 Ritchie ML, Romanuk TN. A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One  2012; 7: e34938. Google Scholar CrossRef Search ADS PubMed  81 Shen NT, Maw A, Tmanova LL et al.   Timely use of probiotics in hospitalized adults prevents Clostridium difficile infection: a systematic review with meta-regression analysis. Gastroenterology  2017; 152: 1889– 900.e9. Google Scholar CrossRef Search ADS PubMed  82 Johnston BC, Ma SS, Goldenberg JZ et al.   Probiotics for the prevention of Clostridium difficile-associated diarrhea: a systematic review and meta-analysis. Ann Intern Med  2012; 157: 878– 88. Google Scholar CrossRef Search ADS PubMed  83 Castagliuolo I, LaMont JT, Nikulasson ST et al.   Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infect Immun  1996; 64: 5225– 32. Google Scholar PubMed  84 Allen SJ, Wareham K, Wang D et al.   Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhoea and Clostridium difficile diarrhoea in older inpatients (PLACIDE): a randomised, double-blind, placebo-controlled, multicentre trial. Lancet  2013; 382: 1249– 57. Google Scholar CrossRef Search ADS PubMed  85 Trubiano JA, Cheng AC, Korman TM et al.   Australasian Society of Infectious Diseases updated guidelines for the management of Clostridium difficile infection in adults and children in Australia and New Zealand. Intern Med J  2016; 46: 479– 93. Google Scholar CrossRef Search ADS PubMed  86 Cohen SH, Gerding DN, Johnson S et al.   Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol  2010; 31: 431– 55. Google Scholar CrossRef Search ADS PubMed  87 Fehér C, Mensa J. A comparison of current guidelines of five international societies on Clostridium difficile infection management. Infect Dis Ther  2016; 5: 207– 30. Google Scholar CrossRef Search ADS PubMed  88 Bender KO, Garland M, Ferreyra JA et al.   A small-molecule antivirulence agent for treating Clostridium difficile infection. Sci Transl Med  2015; 7: 306ra148. Google Scholar CrossRef Search ADS PubMed  89 Bartoloni A, Mantella A, Goldstein BP et al.   In-vitro activity of nisin against clinical isolates of Clostridium difficile. J Chemother  2004; 16: 119– 21. Google Scholar CrossRef Search ADS PubMed  90 Gerding DN, Meyer T, Lee C et al.   Administration of spores of nontoxigenic Clostridium difficile strain M3 for prevention of recurrent C. difficile infection: a randomized clinical trial. JAMA  2015; 313: 1719– 27. Google Scholar CrossRef Search ADS PubMed  91 Brouwer MS, Roberts AP, Hussain H et al.   Horizontal gene transfer converts non-toxigenic Clostridium difficile strains into toxin producers. Nat Commun  2013; 4: 2601. Google Scholar CrossRef Search ADS PubMed  92 Dingle KE, Griffiths D, Didelot X et al.   Clinical Clostridium difficile: clonality and pathogenicity locus diversity. PLoS One  2011; 6: e19993. Google Scholar CrossRef Search ADS PubMed  93 Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res  2006; 47: 241– 59. Google Scholar CrossRef Search ADS PubMed  94 Giel JL, Sorg JA, Sonenshein AL et al.   Metabolism of bile salts in mice influences spore germination in Clostridium difficile. PLoS One  2010; 5: e8740. Google Scholar CrossRef Search ADS PubMed  95 McCoy RM, Klick A, Hill S et al.   Luminal toxin-binding agents for Clostridium difficile infection. J Pharm Pract  2016; 29: 361– 7. Google Scholar CrossRef Search ADS PubMed  96 Puri BK, Hakkarainen-Smith JS, Monro JA. The potential use of cholestyramine to reduce the risk of developing Clostridium difficile-associated diarrhoea in patients receiving long-term intravenous ceftriaxone. Med Hypotheses  2015; 84: 78– 80. Google Scholar CrossRef Search ADS PubMed  97 Louie TJ, Peppe J, Watt CK et al.   Tolevamer, a novel nonantibiotic polymer, compared with vancomycin in the treatment of mild to moderately severe Clostridium difficile-associated diarrhea. Clin Infect Dis  2006; 43: 411– 20. Google Scholar CrossRef Search ADS PubMed  98 Johnson S, Louie TJ, Gerding DN et al.   Vancomycin, metronidazole, or tolevamer for Clostridium difficile infection: results from two multinational, randomized, controlled trials. Clin Infect Dis  2014; 59: 345– 54. Google Scholar CrossRef Search ADS PubMed  99 Howerton A, Ramirez N, Abel-Santos E. Mapping interactions between germinants and Clostridium difficile spores. J Bacteriol  2011; 193: 274– 82. Google Scholar CrossRef Search ADS PubMed  100 Howerton A, Patra M, Abel-Santos E. A new strategy for the prevention of Clostridium difficile infection. J Infect Dis  2013; 207: 1498– 504. Google Scholar CrossRef Search ADS PubMed  101 Winston JA, Theriot CM. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. Anaerobe  2016; 41: 44– 50. Google Scholar CrossRef Search ADS PubMed  102 Weingarden AR, Dosa PI, DeWinter E et al.   Changes in colonic bile acid composition following fecal microbiota transplantation are sufficient to control Clostridium difficile germination and growth. PLoS One  2016; 11: e0147210. Google Scholar CrossRef Search ADS PubMed  103 Weingarden AR, Chen C, Zhang N et al.   Ursodeoxycholic acid inhibits Clostridium difficile spore germination and vegetative growth, and prevents the recurrence of ileal pouchitis associated with the infection. J Clin Gastroenterol  2016; 50: 624– 30. Google Scholar CrossRef Search ADS PubMed  104 Wilcox MH, Gerding DN, Poxton IR et al.   Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N Engl J Med  2017; 376: 305– 17. Google Scholar CrossRef Search ADS PubMed  105 Orth P, Xiao L, Hernandez LD et al.   Mechanism of action and epitopes of Clostridium difficile toxin B-neutralizing antibody bezlotoxumab revealed by X-ray crystallography. J Biol Chem  2014; 289: 18008– 21. Google Scholar CrossRef Search ADS PubMed  106 Secore S, Wang S, Doughtry J et al.   Development of a novel vaccine containing binary toxin for the prevention of Clostridium difficile disease with enhanced efficacy against NAP1 strains. PLoS One  2017; 12: e0170640. Google Scholar CrossRef Search ADS PubMed  107 Sponseller JK, Steele JA, Schmidt DJ et al.   Hyperimmune bovine colostrum as a novel therapy to combat Clostridium difficile infection. J Infect Dis  2015; 211: 1334– 41. Google Scholar PubMed  108 Hutton ML, Cunningham BA, Mackin KE et al.   Bovine antibodies targeting primary and recurrent Clostridium difficile disease are a potent antibiotic alternative. Sci Rep  2017; 7: 3665. Google Scholar CrossRef Search ADS PubMed  109 Branda SS, Vik S, Friedman L et al.   Biofilms: the matrix revisited. Trends Microbiol  2005; 13: 20– 6. Google Scholar CrossRef Search ADS PubMed  110 Dapa T, Unnikrishnan M. Biofilm formation by Clostridium difficile. Gut Microbes  2013; 4: 397– 402. Google Scholar CrossRef Search ADS PubMed  111 Dawson LF, Valiente E, Faulds-Pain A et al.   Characterisation of Clostridium difficile biofilm formation, a role for Spo0A. PLoS One  2012; 7: e50527. Google Scholar CrossRef Search ADS PubMed  112 Nale JY, Chutia M, Carr P et al.   ‘Get in early’; biofilm and wax moth (Galleria mellonella) models reveal new insights into the therapeutic potential of Clostridium difficile bacteriophages. Front Microbiol  2016; 7: 1383. Google Scholar CrossRef Search ADS PubMed  © The Author(s) 2017. Published by Oxford University Press and Sixth Affiliated Hospital of Sun Yat-Sen University This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Gastroenterology Report Oxford University Press

Treatment of recurrent Clostridium difficile colitis: a narrative review

Loading next page...
 
/lp/ou_press/treatment-of-recurrent-clostridium-difficile-colitis-a-narrative-bDJ1np7HXh
Publisher
Oxford University Press
Copyright
© The Author(s) 2017. Published by Oxford University Press and Sixth Affiliated Hospital of Sun Yat-Sen University
eISSN
2052-0034
D.O.I.
10.1093/gastro/gox041
Publisher site
See Article on Publisher Site

Abstract

Abstract Clostridium difficile is a gram-positive, spore-forming, obligate anaerobic bacillus that was originally isolated from the stool of a healthy neonate in 1935. In high-income countries, C. difficile is the most common cause of infectious diarrhoea in hospitalized patients. The incidence of C. difficile infection in the USA has increased markedly since 2000, with hospitalizations for C. difficile infections in non-pregnant adults doubling between 2000 and 2010. Between 20% and 35% of patients with C. difficile infection will fail initial antibiotic treatment and, of these, 40–60% will have a second recurrence. Recurrence of C. difficile infection after initial treatment causes substantial morbidity and is a major burden on health care systems. In this article, current treatments for recurrent C. difficile infection are reviewed and future directions explored. These include the use of antibiotics, probiotics, donor faecal transplants, anion resins, secondary bile acids or anti-toxin antibodies. Clostridium difficile, recurrent infection, faecal microbiota transplant, anion-binding resins, monoclonal antibodies, secondary bile acid Introduction Clostridium difficile is a gram-positive, spore-forming, obligate anaerobic bacillus that was originally isolated from the stool of a healthy neonate in 1935 [1]. It was first identified as a major infectious cause of antibiotic-associated diarrhoea in 1978 [2]. In high-income countries, it is the most common cause of infectious diarrhoea in hospitalized patients [3,4]. The endospores from C. difficile are similar to those of Bacillus anthracis and Clostridium perfringens, in that they are impervious to desiccation, temperature fluxes, freezing, irradiation and many antiseptic solutions including alcohol-based hand gels and quaternary ammonium-based cleaning agents. C. difficile spores are spread by the faecal–oral route, hand-to-hand contact and also by air-borne environmental dispersal in hospital wards [5]. Epidemiology of C. difficile infection (CDI) The incidence of C. difficile infection (CDI) in the USA has increased markedly since 2000, with hospitalizations for CDI in non-pregnant adults doubling between 2000 and 2010 [6]. Based on data from US death certificates, it is the leading cause of gastroenteritis-associated mortality, with estimated deaths of 14 000 in 2007 [7], 29 000 in 2011 [6] and 44 500 in 2014 [8]. Data from the Center for Disease Control and Prevention for 2011 showed an annual toll in US health care facilities that was estimated to be 453 000 cases, 83 000 recurrences and 15 000 deaths, with an estimated annual cost of approximately $US40 billion [9]. Excess health care costs due to CDI have been estimated at $US4.8 billion dollars for acute care facilities alone [10]. Most CDI cases present during or shortly after antimicrobial use [11–13], although the risk can persist for up to 90 days [14,15]. Clindamycin, other macrolides, third-generation cephalosporins, penicillins and fluoroquinolones are the antibiotics most frequently associated with CDI [16]. Use of such broad-spectrum antibiotics leads to increased patient susceptibility to CDI infection and decreased ‘herd immunity’, particularly in health care facilities such as hospitals and nursing homes. C. difficile has been found to have a large number of mobile genetic elements within its genome, inserted during its phylogenetic evolution. Conjugative transposons and bacteriophages allow acquisition of antibiotic resistance through horizontal transfer from other genetically unrelated bacteria [17]. Antibiotic selection pressure provides antibiotic resistant C. difficile strains with a competitive advantage over the normal host intestinal microbiota. The three most common C. difficile North American Pulsed-field-type (NAP) strains found across 10 geographic regions in the USA in 2009–11 were NAP1/UK Ribotype (RT) 027 (28%), NAP4/RT014 (10.2%) and NAP11/RT106 (9.1%) [6]. The three most common strains in the Scottish CDI epidemic of 2007–08 were NAP1/RT027 (12.8%), NAP 11/RT106 (38.7%) and NAP2/001(24.5%), all three of which showed resistance to cefotaxime, clindamycin, erythromycin, moxifloxacin and levofloxacin, compared to other less virulent strains [18]. Overall, 3174 CDI cases were recorded between December 2007 and May 2008 at 38 Scottish hospitals, with 285 deaths and a mortality rate of 9% [18]. Hypervirulent C. difficile Ribotype 027 strain The hypervirulent NAP1, PCR ribotype 027 strain is characterized by high-level fluoroquinolone resistance, efficient sporulation, enhanced cytotoxicity, markedly high toxin production [19,20] and a mortality rate three times higher than less virulent strains (such as the 001 or 014 ribotypes) [21,22]. This is related to C. difficile NAP1 acquiring binary toxin (CDT) production from C. perfringens and mutational loss of the toxin repressor gene tcdC, which is the regulator for C. difficile exotoxin A and B transcription and synthesis. Toxin A (TcdA) causes increased intestinal permeability and fluid secretion, and Toxin B (TcdB) is cytotoxic, causing colonic inflammation [15]. This occurs through toxin inactivation of host intestinal G-proteins of the Rho and ras families via glucosylation. NAP1 strains can synthesize 16 times more Toxin A and 23 times more Toxin B than less virulent strains, leading to increased cytotoxicity and disease severity [23]. Patients with NAP1 CDI are more likely to develop fulminant pseudomembranous colitis, toxic megacolon and multi-organ failure (MODS) and require emergency colectomy [22,24,25]. Systemic absorption of TcdB appears to be more important than TcdA in contributing to extra-intestinal damage, host pro-inflammatory responses and systemic toxaemia in severe CDI [26]. Patients infected with C. difficile strains producing binary toxin have a 60% greater mortality than those infected with binary toxin-deficient strains [23]. Initial CDI treatment Current recommendations for treatment of initial CDI include oral metronidazole or vancomycin for 10–14 days for mild or moderate disease, as well as cessation of antibiotic therapy that may have predisposed to the infection. For severe infections, oral vancomycin (± IV metronidazole) or oral fidaxomicin have been recommended [16]. In patients with a paralytic ileus, colonic diversion or dilated colon, rectal vancomycin may be a useful alternative to oral administration [15]. Recurrent CDI Between 20% and 35% of patients with CDI will fail initial antibiotic treatment [27–30] and, of these, 40–60% will have a second recurrence [31,32]. The majority of recurrences are due to relapses of CDI with the original strain rather than re-infection with a different strain [15]. Resistance to vancomycin or metronidazole is not considered a factor in recurrent CDI, but such antibiotics may contribute to continued intestinal dysbiota. Recurrent infection is more common in older patients (>65 years), females, Caucasian patients, those with current antibiotic use, concomitant use of proton pump inhibitors and more severe initial disease [6,33]. The presence of comorbidities, anti-neoplastic chemotherapy, inadequate IgG antibody response to Toxin A after initial episode, inflammatory bowel disease, organ transplantation, chronic kidney disease, hypogammaglobulinaemia, immunodeficiency and exposure to an infant carrier or infected adult have also been recognized as risk factors [34–37]. The contribution of proton pump inhibitors (PPIs) to CDI remains unclear. C. difficile spores are resistant to gastric acid, but vegetative forms are susceptible. In community-acquired CDI patients, PPI exposure was observed in 31% of patients with CDI, with no exposure to antibiotics [15]. There have been reports of increased CDI risk with PPIs [38]; however, other studies have reported no increase in risk following adjustment for co-existent conditions [39–41]. Health care costs in recurrent CDI In a recent comprehensive analysis of hospital costs associated with recurrent CDI, Rodrigues et al. found that each recurrent CDI patient had an average of 4.4 stool tests for C. difficile toxin and received an average of 2.5 prescriptions for oral vancomycin. Most patients with recurrent CDI (84%) required hospitalization and 6% required urgent total colectomy. The total mean cost per patient was US$34 104, comprising hospitalization (68%), surgery (20%) and drug treatment (8%) costs. When applied to US national costs associated with rCDI, an annual cost of US$2.8 billion was extrapolated [42]. Treatment of recurrent CDI Antibiotic therapy The management of an initial CDI recurrence includes repeat administration of either oral metronidazole or vancomycin for 10–14 days. This achieves sustained cure rates in only 50% of patients [37,43]. The use of metronidazole is not recommended beyond the first CDI recurrence due to the risk of azole metabolite neurotoxicity [44]. Second recurrences may be treated by fidaxomicin or by a tapered, pulsed vancomycin regime [16]. Fidaxomicin is a poorly absorbed, orally administered macrolide antibiotic that is bactericidal towards C. difficile as compared to metronidazole and vancomycin, which are bacteriostatic [44]. Fidaxomicin has a narrower spectrum of antimicrobial activity than first-line antibiotic therapy, which results in less disruption of the normal gut flora. In a randomized–controlled trial (RCT), it had a similar cure rate but a significantly lower rate of recurrence than treatment with vancomycin (13% vs 24%), although this was in non-NAP Type 1 strains [45]. Fidaxomicin is considerably more expensive than vancomycin, and may have less activity against NAP1 CDI [44]. Rifaximin, another rifamycin, has also been tested in small case studies [46,47]. Stool transplant The human gut has been estimated to harbour over 160 bacterial species and greater than 1014 individual bacteria, the majority of which exist within the colon [48]. Antibiotics diminish specific commensal species, which usually suppress the growth of gut pathogens, allowing uninhibited growth of pathogens such as C. difficile [49,50]. Butyrate-producing bacteria are depleted in CDI, including Ruminococcaceae and Lachnospiraceae families. Butyrate is a short-chain fatty acid (SCFA). SCFAs are important in host energy production, intestinal epithelial cell homeostasis, immune function and normal gut microbial growth [51]. Recurrent C. difficile has furthermore been associated with a reduced number of Bacteroidetes and Firmicutes, both dominant gut flora [52]. Re-implanting such strains via faecal transplantation from healthy individuals can restore the normal gut microbial biodiversity, community structure and metabolomic functional profiles. Faecal microbiota transplant (FMT) substantially increases the amounts of secondary bile acids and restores SCFA production by gut microbiota [51]. Mean cure rates in recurrent CDI of 91–96% can be achieved with FMT, indicating that donor faecal transplantation is effective in treating recurrent disease after initial antibiotic therapy [52–55]. Larger longitudinal studies are required to assess regulatory concerns and long-term adverse events in patients after FMT [56]. A variety of routes of administration of FMT have been reported. To date, the best mode of treatment is still being determined [57]. Postigo and Kim reported a pooled analysis that indicated a marginally improved response, although not statistically significant, for nasogastric administration of donor faeces over colonoscopic application (93% vs 85%) [58]. In a 2014 systematic review of different routes of FMT, diarrhoea resolution rates varied according to the site of infusion: 81% in the stomach; 86% in the duodenum/jejunum; 93% in the caecum/ascending colon; and 84% in the distal colon [59]. Case series have reported excellent resolution rates following rectal enema [57,60,61] or colonoscopic administration [62–67]. Colonoscopic administration allows direct application throughout the colon and also terminal ileum where C. difficile can be found. However, it involves either inpatient or outpatient use of endoscopy facilities and must be undertaken with caution to minimize the risk of perforation in an already diseased colon. In addition, efficacy of this form of administration may also depend on the protocol used to cleanse the colon prior to application. Bowel preparations similar to those used prior to colonoscopy may reduce the density of C. difficile organisms including the metabolically inactive spores [65]. Application via a nasogastric or nasojejunal feeding tube allows delivery to the small bowel, with subsequent passage downstream to the distal ileum and colon without pre-preparation of the bowel. van Nood et al., in a landmark RCT, found a single nasoduodenal infusion of donor faeces was associated with a significantly higher rate of resolution of recurrent CDI compared to a vancomycin regime with or without bowel lavage (81% vs 23% and 31%) [52]. Oral preparations of frozen faecal microbial transplant capsules have also been studied with excellent results reported. Youngster et al. reported a sustained cure after a single oral administration of 30 frozen donor faecal capsules in 147/180 patients with recurrent or refractory CDI [68]. A second administration was successful in 17/26 patients who relapsed, resulting in an overall resolution of CDI diarrhoea in 91% of patients. Advantages of this method include outpatient administration of capsules and no requirement for instrumentation of the digestive tract. FMT is also more cost-effective in recurrent CDI than oral vancomycin or fidaxomicin [69–71]. In addition to FMT, research is continuing on a defined Microbial Ecosystem Therapeutic (MET-1). This uses a defined microbial population of 33 different bacterial species, prepared under laboratory conditions, which is then administered. MET has emerged due, in part, to the safety concerns in FMT of potential transfer of unidentified pathogens to the recipient and the logistics of screening suitable FMT donors. Petrof et al. reported that one MET preparation, derived from the faeces of a healthy human volunteer, was successfully used to cure patients with recurrent CDI [72]. Further research into MET-1 has suggested it may be effective as a mode of recurrent CDI prevention. MET-1 decreased both local and systemic inflammation and the overall amount of detectable intestinal TcdA in a mouse model. This occurred despite there being no decrease in the intestinal C. difficile burden in the mouse stool [73]. Probiotics The altered composition of gut microbiota in the setting of C. difficile infection has raised interest in the potential role of probiotics. Treatment aims to re-colonize and restore the diversity of flora following the disruption due to antibiotic treatment and C. difficile overgrowth [74]. Probiotics may act through a number of mechanisms. These include temporary colonization, production of bactericidal acids and peptides, and competition with C. difficile for nutrients and epithelial adhesion. Lactobacilli have been shown to suppress growth of C. difficile in hamsters [75]. Probiotic bacteria produce lactic acid, which lowers digestive tract pH, as well as bacteriocins, both of which can inhibit growth of C. difficile [76]. They may disrupt the binding of C. difficile Toxins A and B to intestinal epithelial cells and stimulate host IgA anti-toxin production [15,77]. Bifidobacterium longum and breve have been shown to reduce the cytotoxic effect of C. difficile on the human intestinal epithelial cell line HT29 [78]. This was related to the specific reduction of TcdB levels, particularly by B. longum. Some studies have suggested a benefit from probiotics in the treatment or prevention of C. difficile infection [79–81]. A three-strain combination of Lactobacillus acidophilus, L. casei and L. rhamnosus (Bio-K+) was used to prevent primary CDI in 45 000 adult patients given any antibiotic. Patients were monitored for over 10 years and a 39% decrease in the rate of CDI cases was found [56]. Currently, the most promising agents appear to be a combination of L. acidophilus and L. casei, other mixed species, Saccharomyces boulardii or L. rhamnosus [82]. The tropical yeast S. boulardii produces a specific protease which cleaves TcdA and may also inactivate TcdA receptors [77,83]. A RCT of recurrent CDI treatments showed S. boulardii (1 g/day for 28 days) in combination with high-dose oral vancomycin (2 g/day for 10 days) was effective in reducing the CDI recurrence rate to 16.7% as compared to high-dose vancomycin/placebo (50%, p = 0.05). It was not effective in combination with low-dose vancomycin or metronidazole, as C. difficile was not completely cleared in these patients [28,44]. Allen et al., in a large RCT from 2013, showed that probiotics did not prevent C. difficile recurrence [84]. The 2016 Australasian Society of Infectious Diseases (ASID) [85] and the Society for Healthcare Epidemiology of America (SHEA) 2010 Guidelines [86] do not recommend probiotics be used as a preventative or adjunctive treatment in any C. difficile management algorithm. A recent meta-analysis, however, demonstrated its efficacy in primary CDI prophylaxis in patients receiving systemic antibiotic treatment [87]. Hence, probiotics may be considered for this indication by future Infectious Diseases Society guidelines. The use of probiotics for CDI prevention and FMT for recurrent CDI treatment has led to interest in intestinal small molecule inhibitors and bacteriocins. These are produced by commensal intestinal microbiota and can inhibit toxigenic C. difficile. Ebselen and methyl cholate are two small molecule inhibitors of TcdB [88]. Examples of bacteriocins include thuricin CD, nisin, lacticin 3147, actagardine, mutacin and diffocins [89]. Nisin and Lacticin 3147 are produced by Lactococcus lactis and have efficacy against C. difficile that is comparable or superior to vancomycin or metronidazole. Their application is limited by their undesirable effects on the commensal gut microbiome. Studies are proceeding of bioengineered bacteriocins, which have enhanced activity against C. difficile RT027 and fewer effects on normal gut flora [89]. Re-colonization with non-toxigenic C. difficile strains Not all strains of C. difficile produce toxins, and thus re-colonization with non-toxigenic strains has been investigated as a potential treatment. Gerding et al. reported the results of a phase II randomized, double-blind, placebo-controlled trial that involved 168 patients [90]. They found a preparation containing the non-toxigenic C. difficile strain M3 (VP20621; NTCD-M3) was effective, well tolerated and appeared to be safe, with few adverse events reported. CDI recurrence occurred in only 11% of patients receiving the preparation compared to 30% taking the placebo. Furthermore, only 2% of patients who were successfully colonized with the NTCD-M3 strain suffered recurrence, compared to 31% receiving the placebo. There are, however, potential areas of concern with this line of treatment—specifically, the occurrences of horizontal transfer of the pathogenicity locus (PaLoc) containing the genes encoding TcdA and TcdB between remnant toxigenic strains and introduced non-toxigenic strains. This has been proven experimentally by Brouwer et al. [91] and has also occurred in circulating C. difficile populations from a single geographic location [92]. Further research is therefore required into the circumstances whereby transfer of the PaLoc occurs before re-colonization with non-toxigenic C. difficile spores could be used as a viable treatment modality. Primary bile acids and anion-binding resins The use of anion-binding resins has not been shown to be superior to standard antibiotic treatment in CDI, but may have a role as an adjunctive therapy. Up to 80% of primary bile salts (e.g. taurocholate, glycocholate and cholate) excreted in the bile are converted to secondary bile salts (e.g. deoxycholate) by normal intestinal flora. For example, bacterial 7α-dehydroxylase converts taurocholate to deoxycholate. Taurocholate can also be converted to chenodeoxycholate by Bacteroides species with 12α-dehydroxylase activity [93]. Some primary bile salts such as cholate stimulate C. difficile spores to germinate in the small intestine and caecum, whilst the primary bile salt chenodeoxycholate inhibits spore germination and outgrowth of vegetative cells in the colon. Deoxycholate still allows spores to germinate but vegetative cells cannot grow. In broad-spectrum antibiotic-treated hosts, the reduction in normal bacterial flora results in lower levels of commensal 7α-dehydroxylase and higher concentrations of primary bile salts. This allows C. difficile spores to rapidly germinate and the resulting vegetative cells to grow and subsequently produce exotoxins [94]. Giel et al. compared the effects of intestinal and caecal extracts from untreated and antibiotic-treated mice and related this to cholestyramine administration. Caecal contents from the antibiotic-treated mice stimulated colony formation of C. difficile spores and exotoxin B levels by 10 000-fold after 24 hours [94]. Cholestyramine decreased the ability of taurocholate to germinate C. difficile spores by 200-fold. When treated with cholestyramine, there was a decrease in the ability of the intestinal extracts from the clindamycin-treated mice to stimulate colony formation [94]. Whilst cholestyramine resin is not effective as a primary therapy [95], potential exists for its adjunctive use as a primary bile acid sequestrant in human CDI [96]. One disadvantage of anion resins is that they also bind luminal vancomycin [95]. Tolevamer is an anionic, soluble polystyrene compound shown to sequester CDI Toxins A and B. It was associated with a lower CDI recurrence rate compared to oral vancomycin [97]. Oral vancomycin 500 mg/day was superior to 6 g/day and 3 g/day of oral Tolevamer in time for resolution of diarrhoea in moderate to severe CDI (2.0, 2.5 and 4.0 days, respectively) and in efficacy (91%, 83% and 67% respective resolution). A more recent study showed that Tolevamer was inferior to both metronidazole and vancomycin in analyses of both primary and recurrent CDI, concomitant use of antibiotics, CDI severity and infection with hypervirulent NAP1 CDI strain. However, in the small cohort of patients who did respond to Tolevamer, the CDI recurrence rate was 4.5%, which was significantly better than recurrence rates for metronidazole (23.0%) or vancomycin (20.6%) [98]. Synthetic bile salt analogues Given the ability of taurocholate to bind and activate C. difficile spores, it has been possible to test taurocholate agonists and antagonists of C. difficile spore germination [99]. One of the analogues, CAmSA, was found to be a strong competitive inhibitor of taurocholate-mediated C. difficile spore germination. It was active at concentrations approximately 275-fold lower than taurocholate and was four times more active than the natural inhibitor chenodeoxycholate [99]. When tested in a mouse model, CAmSA was able to prophylactically prevent murine CDI caused by two different CD strains and could be titrated to ameliorate CDI signs in a dose-dependent manner [100]. This raises the possibility of its use in prophylaxis against CDI. Secondary bile acid Recent research has highlighted the importance of secondary bile acids in the pathogenesis and potential treatment of CDI. A loss in microbially derived intestinal secondary bile acids can lead to increased susceptibility for CDI, particularly in hypervirulent strains [101]. Weingarden et al. reported that there were no secondary bile acids (lithocholate, deoxycholate) and an abundance of primary bile acids (taurocholate, cholate, chenodeoxycholate) in the faeces of recurrent CDI patients prior to FMT [102]. After successful FMT, there were no faecal primary bile salts and the levels of secondary bile salts were restored to those of healthy persons. It was shown that germination of spores was variable amongst C. difficile strains in response to primary bile acids, and was possibly related to expression of the spore germinant CspC. This is a C. difficile serine protease bile acid receptor that was most distinct in the NAP7/RT078 hypervirulent livestock-derived CDI strain [102]. Weingarden et al. subsequently reported that ursodeoxycholic acid (UDCA) inhibited both spore germination and vegetative growth of all C. difficile strains they tested [103]. UDCA is produced by microbial conversion of lithocholate in the colon. They suggested that oral UDCA may be useful in patients who were not suitable for FMT (e.g. recurrent CDI pouch ileitis) or were refractory to antibiotic and FMT treatment. Monoclonal antibodies The use of systemic monoclonal antibodies has been reported to decrease the rate of C. difficile recurrence [30,104]. Bezlotoxumab has been shown by X-ray crystallography to block the binding of Toxin B to host cells, thereby negating its action [105]. The initial double-blind RCT using IV antibodies against both Toxins A and B found the overall rate of recurrence of C. difficile infection was lower amongst patients treated with monoclonal antibodies versus placebo (7% vs 25%; p < 0.001). The recurrence rate among patients with the epidemic BI/NAP1/027 strain was 8% for the antibody group and 32% for the placebo group (p = 0.06). In the patients with more than one previous episode of CDI, respective recurrence rates after monoclonal antibody treatment versus placebo were 7% and 38% (p = 0.006) [30]. The subsequent MODIFY I and II trials showed that single-dose intravenous Bezlotoxumab in conjunction with standard oral antibiotic treatment resulted in a significantly lower (38%) rate of recurrent CDI infection than with placebo and standard antibiotic treatment alone [104]. The rate of recurrent CDI was even lower with Bezlotoxumab (51%) in patients >65 years of age. The initial CDI cure rates of the Bezlotoxumab/antibiotic and placebo/antibiotic-treated groups were similar in pooled data (80%). This is related to the rapid effect of standard antibiotic treatment-lowering Toxin B levels in the initial CDI episode. The protective effect of Bezlotoxumab against recurrent CDI was sustained for 12 weeks after administration. A single dose of monoclonal antibody was used due to the long half life (19 days). There was no benefit found with Actoxumab (a monoclonal antibody directed against Toxin A) alone, nor did its combination with Bezlotoxumab increase the efficacy of treatment [104]. This is despite previous epidemiological evidence that showed generation of endogenous anti-Toxin A IgG antibodies was protective against recurrent CDI [34]. The relative protective effect of host IgG antitoxins against Toxins A or B may also be species-specific [104]. The results of MODIFY I and II prompted the US Food and Drug Administration (FDA) to approve Bezlotoxumab in 2016 for use as secondary prevention for patients at a high risk of CDI recurrence (prior history of CDI and >65 years) [9,104]. Further research is still required at this stage to identify which patients will benefit most from Bezlotoxumab. Additional cost analyses will also need to be undertaken before such treatment becomes more widely used. The efficacy of a tetravalent vaccine with antibodies to CDI binary toxin in addition to Toxins A and B is still being evaluated [106]. Hyperimmune bovine colostrum (HBC) Colostrum is the initial milk produced by a lactating mammal following parturition. Bovine colostrum is known to be rich in immunoglobulins (particularly IgG), which are stable in the gastrointestinal tract. This can provide passive protection to the infant calf from environmentally acquired enteric pathogens such as rotavirus, Salmonella enterica, enterotoxigenic Escherichia coli, Clostridium difficile, C. perfringens and Cryptospridium parvum. By repeatedly inoculating a gestating cow with specific antigens, it is possible to stimulate the production of colostrum containing high concentrations of antigen-specific antibodies known as HBC. Recent research has investigated the potential of HBC to prevent or treat C. difficile. In 2015, Sponseller et al. demonstrated that HBC produced following inoculation of cows with recombinant mutants of Toxins A and B had the potential to be used in primary CDI treatment [107]. They developed a model of gnotobiotic piglets transplanted with normal human gut microbiota and then exposed to C. difficile. The piglets treated with non-immune colostrum developed symptoms of C. difficile colitis whereas those treated with HBC only suffered mild disease. More recently, a TcdB-specific HBC has been developed and investigated by Hutton et al. [108]. They demonstrated that administration of TcdB HBC alone or in combination with spore or vegetative cell-targeted colostrum prevented and treated CDI in mice and reduced recurrence by 67%. The production cost of colostrum IgG antibodies is less than intravenous monoclonal antibodies. This suggests that HBC may be a cost-effective future treatment for human enteric infections such as C. difficile colitis. Bacteriophage therapy C. difficile is known to produce biofilms, which consist of aggregates of cells embedded in a matrix of self-produced extracelllar polymetric substance (EPS) [109–111]. The matrix binds spores and vegetative cells and protects them from oxidative stress whilst enhancing their adhesion to abiotic surfaces [111]. This allows persistence and proliferation of C. difficile. Recent studies have investigated the therapeutic potential of bacteriophages (viruses that specifically infect bacteria). Nale et al., in 2016, studied the application of a four-phage cocktail on C. difficile ribotype 014/020 biofilms [112]. They found the phages prevented biofilm formation and penetrated established biofilms leading to lysis, plaque formation and a reduction in bacterial viability and biomass in vitro. They also reported an enhanced effect when used as an adjunct to vancomycin. This was undertaken in an animal model, but the results are promising for bacteriophage administration to become a future prophylactic and therapeutic intervention in human CDI and recurrent CDI. Conclusion Recurrence of CDI after initial treatment causes substantial morbidity and is a major burden on health care systems. There is good evidence that FMT for recurrent CDI is both clinically and cost-effective in achieving a permanent cure. Probiotics are readily available and may assist in prevention of relapse of infection, but further research is required in their role in recurrent CDI. Whilst anion-binding resins may not be first-line treatment, they may be of use in an adjunctive setting. Monoclonal antibodies have proven preventative effect in CDI relapse, and have thus been approved by the FDA. Ongoing research is currently underway into secondary bile acid treatments (UDCA) and development of multivalent toxin vaccines. The emergence of treatments that re-establish intestinal microbiota homeostasis and enhance host immunocompetence is therefore of great importance in the future prevention and treatment of recurrent CDI. Conflict of interest statement: none declared. References 1 Hall IC, O’Toole E. Intestinal flora in new-born infants: with a description of a new pathogenic anaerobe, Bacillius difficilis. Am J Dis Child  1935; 49: 390– 402. Google Scholar CrossRef Search ADS   2 Bartlett JG, Chang TW, Gurwith M et al.   Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. N Engl J Med  1978; 298: 531– 4. Google Scholar CrossRef Search ADS PubMed  3 Magill SS, Edwards JR, Bamberg W et al.  ; Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team. Multistate point-prevalence survey of health care-associated infections. N Engl J Med  2014; 370: 1198– 208. Google Scholar CrossRef Search ADS PubMed  4 Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol  2009; 7: 526– 36. Google Scholar CrossRef Search ADS PubMed  5 Best EL, Fawley WN, Parnell P et al.   The potential for airborne dispersal of Clostridium difficile from symptomatic patients. Clin Infect Dis  2010; 50: 1450– 7. Google Scholar CrossRef Search ADS PubMed  6 Lessa FC, Winston LG, McDonald LC. Emerging Infections Program C. difficile Surveillance Team. Burden of Clostridium difficile infection in the United States. N Engl J Med  2015; 372: 825– 34. Google Scholar CrossRef Search ADS PubMed  7 Hall AJ, Curns AT, McDonald LC et al.   The roles of Clostridium difficile and norovirus among gastroenteritis-associated deaths in the United States, 1999–2007. Clin Infect Dis  2012; 55: 216– 23. Google Scholar CrossRef Search ADS PubMed  8 Desai K, Gupta SB, Dubberke ER et al.   Epidemiological and economic burden of Clostridium difficile in the United States: estimates from a modeling approach. BMC Infect Dis  2016; 16: 303. Google Scholar CrossRef Search ADS PubMed  9 Bartlett JG. Bezlotoxumab—a new agent for Clostridium difficile infection. N Engl J Med  2017; 376: 381– 2. Google Scholar CrossRef Search ADS PubMed  10 Dubberke ER, Olsen MA. Burden of Clostridium difficile on the healthcare system. Clin Infect Dis  2012; 55 (Suppl 2): S88– 92. Google Scholar CrossRef Search ADS PubMed  11 Centers for Disease Control and Prevention (CDC). Severe Clostridium difficile-associated disease in populations previously at low risk—four states, 2005. MMWR Morb Mortal Wkly Rep  2005; 54: 1201– 5. PubMed  12 Dial S, Kezouh A, Dascal A et al.   Patterns of antibiotic use and risk of hospital admission because of Clostridium difficile infection. CMAJ  2008; 179: 767– 72. Google Scholar CrossRef Search ADS PubMed  13 Zar FA, Bakkanagari SR, Moorthi KM et al.   A comparison of vancomycin and metronidazole for the treatment of Clostridium difficile-associated diarrhea, stratified by disease severity. Clin Infect Dis  2007; 45: 302– 7. Google Scholar CrossRef Search ADS PubMed  14 Tedesco FJ. Pseudomembranous colitis: pathogenesis and therapy. Med Clin North Am  1982; 66: 655– 64. Google Scholar CrossRef Search ADS PubMed  15 Ofosu A. Clostridium difficile infection: a review of current and emerging therapies. Ann Gastroenterol  2016; 29: 147– 54. Google Scholar CrossRef Search ADS PubMed  16 Leffler DA, Lamont JT. Clostridium difficile infection. N Engl J Med  2015; 372: 1539– 48. Google Scholar CrossRef Search ADS PubMed  17 Sebaihia M, Wren BW, Mullany P et al.   The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet  2006; 38: 779– 86. Google Scholar CrossRef Search ADS PubMed  18 Lawes T, Lopez-Lozano JM, Nebot CA et al.   Effect of a national 4C antibiotic stewardship intervention on the clinical and molecular epidemiology of Clostridium difficile infections in a region of Scotland: a non-linear time-series analysis. Lancet Infect Dis  2017; 17: 194– 206. Google Scholar CrossRef Search ADS PubMed  19 Akerlund T, Persson I, Unemo M et al.   Increased sporulation rate of epidemic Clostridium difficile Type 027/NAP1. J Clin Microbiol  2008; 46: 1530– 3. Google Scholar CrossRef Search ADS PubMed  20 McDonald LC, Killgore GE, Thompson A et al.   An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med  2005; 353: 2433– 41. Google Scholar CrossRef Search ADS PubMed  21 Loo VG, Poirier L, Miller MA et al.   A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med  2005; 353: 2442– 9. Google Scholar CrossRef Search ADS PubMed  22 Warny M, Pepin J, Fang A et al.   Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet  2005; 366: 1079– 84. Google Scholar CrossRef Search ADS PubMed  23 Sun X, Hirota SA. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection. Mol Immunol  2015; 63: 193– 202. Google Scholar CrossRef Search ADS PubMed  24 Burnham CA, Carroll KC. Diagnosis of Clostridium difficile infection: an ongoing conundrum for clinicians and for clinical laboratories. Clin Microbiol Rev  2013; 26: 604– 30. Google Scholar CrossRef Search ADS PubMed  25 Koss K, Clark MA, Sanders DS et al.   The outcome of surgery in fulminant Clostridium difficile colitis. Colorectal Dis  2006; 8: 149– 54. Google Scholar CrossRef Search ADS PubMed  26 Carter GP, Chakravorty A, Pham Nguyen TA et al.   Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. MBio  2015; 6: e00551. Google Scholar CrossRef Search ADS PubMed  27 Aslam S, Hamill RJ, Musher DM. Treatment of Clostridium difficile-associated disease: old therapies and new strategies. Lancet Infect Dis  2005; 5: 549– 57. Google Scholar CrossRef Search ADS PubMed  28 Cornely OA, Miller MA, Louie TJ et al.   Treatment of first recurrence of Clostridium difficile infection: fidaxomicin versus vancomycin. Clin Infect Dis  2012; 55 (Suppl 2): S154– 61. Google Scholar CrossRef Search ADS PubMed  29 Kelly CP, LaMont JT. Clostridium difficile—more difficult than ever. N Engl J Med  2008; 359: 1932– 40. Google Scholar CrossRef Search ADS PubMed  30 Lowy I, Molrine DC, Leav BA et al.   Treatment with monoclonal antibodies against Clostridium difficile toxins. N Engl J Med  2010; 362: 197– 205. Google Scholar CrossRef Search ADS PubMed  31 McFarland LV, Elmer GW, Surawicz CM. Breaking the cycle: treatment strategies for 163 cases of recurrent Clostridium difficile disease. Am J Gastroenterol  2002; 97: 1769– 75. Google Scholar CrossRef Search ADS PubMed  32 McFarland LV, Surawicz CM, Greenberg RN et al.   A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA  1994; 271: 1913–1 8. Google Scholar CrossRef Search ADS PubMed  33 Garey KW, Sethi S, Yadav Y et al.   Meta-analysis to assess risk factors for recurrent Clostridium difficile infection. J Hosp Infect  2008; 70: 298– 304. Google Scholar CrossRef Search ADS PubMed  34 Kyne L, Warny M, Qamar A et al.   Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet  2001; 357: 189– 93. Google Scholar CrossRef Search ADS PubMed  35 Leav BA, Blair B, Leney M et al.   Serum anti-toxin B antibody correlates with protection from recurrent Clostridium difficile infection (CDI). Vaccine  2010; 28: 965– 9. Google Scholar CrossRef Search ADS PubMed  36 Chitnis AS, Holzbauer SM, Belflower RM et al.   Epidemiology of community-associated Clostridium difficile infection, 2009 through 2011. JAMA Intern Med  2013; 173: 1359– 67. Google Scholar CrossRef Search ADS PubMed  37 Leffler DA, Lamont JT. Treatment of Clostridium difficile-associated disease. Gastroenterology  2009; 136: 1899– 912. Google Scholar CrossRef Search ADS PubMed  38 Dial S, Delaney JA, Barkun AN et al.   Use of gastric acid-suppressive agents and the risk of community-acquired Clostridium difficile-associated disease. JAMA  2005; 294: 2989– 95. Google Scholar CrossRef Search ADS PubMed  39 Novack L, Kogan S, Gimpelevich L et al.   Acid suppression therapy does not predispose to Clostridium difficile infection: the case of the potential bias. PLoS One  2014; 9: e110790. Google Scholar CrossRef Search ADS PubMed  40 Pépin J, Saheb N, Coulombe MA et al.   Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis  2005; 41: 1254– 60. Google Scholar CrossRef Search ADS PubMed  41 Khanna S, Aronson SL, Kammer PP et al.   Gastric acid suppression and outcomes in Clostridium difficile infection: a population-based study. Mayo Clin Proc  2012; 87: 636– 42. Google Scholar CrossRef Search ADS PubMed  42 Rodrigues R, Barber GE, Ananthakrishnan AN. A comprehensive study of costs associated with recurrent Clostridium difficile infection. Infect Control Hosp Epidemiol  2017; 38: 196– 202. Google Scholar CrossRef Search ADS PubMed  43 Hu MY, Katchar K, Kyne L et al.   Prospective derivation and validation of a clinical prediction rule for recurrent Clostridium difficile infection. Gastroenterology  2009; 136: 1206– 14. Google Scholar CrossRef Search ADS PubMed  44 O’Horo JC, Jindai K, Kunzer B et al.   Treatment of recurrent Clostridium difficile infection: a systematic review. Infection  2014; 42: 43– 59. Google Scholar CrossRef Search ADS PubMed  45 Louie TJ, Miller MA, Mullane KM et al.   Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med  2011; 364: 422– 31. Google Scholar CrossRef Search ADS PubMed  46 Garey KW, Ghantoji SS, Shah DN et al.   A randomized, double-blind, placebo-controlled pilot study to assess the ability of rifaximin to prevent recurrent diarrhoea in patients with Clostridium difficile infection. J Antimicrob Chemother  2011; 66: 2850– 5. Google Scholar CrossRef Search ADS PubMed  47 Johnson S, Schriever C, Galang M et al.   Interruption of recurrent Clostridium difficile-associated diarrhea episodes by serial therapy with vancomycin and rifaximin. Clin Infect Dis  2007; 44: 846– 8. Google Scholar CrossRef Search ADS PubMed  48 Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol  1977; 31: 107– 33. Google Scholar CrossRef Search ADS PubMed  49 Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A  2011; 108 (Suppl 1): 4554– 61. Google Scholar CrossRef Search ADS PubMed  50 Jernberg C, Löfmark S, Edlund C et al.   Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J  2007; 1: 56– 66. Google Scholar CrossRef Search ADS PubMed  51 Carlucci C, Petrof EO, Allen-Vercoe E. Fecal microbiota-based therapeutics for recurrent Clostridium difficile infection, ulcerative colitis and obesity. EBioMedicine  2016; 13: 37– 45. Google Scholar CrossRef Search ADS PubMed  52 van Nood E, Vrieze A, Nieuwdorp M et al.   Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med  2013; 368: 407– 15. Google Scholar CrossRef Search ADS PubMed  53 Bakken JS. Fecal bacteriotherapy for recurrent Clostridium difficile infection. Anaerobe  2009; 15: 285– 9. Google Scholar CrossRef Search ADS PubMed  54 Tvede M, Rask-Madsen J. Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet  1989; 1: 1156– 60. Google Scholar CrossRef Search ADS PubMed  55 Agrawal M, Aroniadis OC, Brandt LJ et al.   The long-term efficacy and safety of fecal microbiota transplant for recurrent, severe, and complicated Clostridium difficile infection in 146 elderly individuals. J Clin Gastroenterol  2016; 50: 403– 7. Google Scholar PubMed  56 Culligan EP, Sleator RD. Advances in the microbiome: applications to Clostridium difficile infection. J Clin Med  2016; 5.pii: E83. Google Scholar CrossRef Search ADS PubMed  57 Kassam Z, Lee CH, Yuan Y et al.   Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol  2013; 108: 500– 8. Google Scholar CrossRef Search ADS PubMed  58 Postigo R, Kim JH. Colonoscopic versus nasogastric fecal transplantation for the treatment of Clostridium difficile infection: a review and pooled analysis. Infection  2012; 40: 643– 8. Google Scholar CrossRef Search ADS PubMed  59 Cammarota G, Ianiro G, Gasbarrini A. Fecal microbiota transplantation for the treatment of Clostridium difficile infection: a systematic review. J Clin Gastroenterol  2014; 48: 693– 702. Google Scholar CrossRef Search ADS PubMed  60 Bowden TA, Mansberger AR, Lykins LE. Pseudomembraneous enterocolitis: mechanism for restoring floral homeostasis. Am Surg  1981; 47: 178– 83. Google Scholar PubMed  61 Gustafsson A, Lund-Tønnesen S, Berstad A et al.   Faecal short-chain fatty acids in patients with antibiotic-associated diarrhoea, before and after faecal enema treatment. Scand J Gastroenterol  1998; 33: 721– 7. Google Scholar CrossRef Search ADS PubMed  62 Kelly CR, de Leon L, Jasutkar N. Fecal microbiota transplantation for relapsing Clostridium difficile infection in 26 patients: methodology and results. J Clin Gastroenterol  2012; 46: 145– 9. Google Scholar CrossRef Search ADS PubMed  63 Kelly CR, Khoruts A, Staley C et al.   Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection: a randomized trial. Ann Intern Med  2016; 165: 609– 16. Google Scholar CrossRef Search ADS PubMed  64 Khoruts A, Dicksved J, Jansson JK et al.   Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol  2010; 44: 354– 60. Google Scholar PubMed  65 Persky SE, Brandt LJ. Treatment of recurrent Clostridium difficile-associated diarrhea by administration of donated stool directly through a colonoscope. Am J Gastroenterol  2000; 95: 3283– 5. Google Scholar PubMed  66 Rohlke F, Surawicz CM, Stollman N. Fecal flora reconstitution for recurrent Clostridium difficile infection: results and methodology. J Clin Gastroenterol  2010; 44: 567– 70. Google Scholar CrossRef Search ADS PubMed  67 Yoon SS, Brandt LJ. Treatment of refractory/recurrent C. difficile-associated disease by donated stool transplanted via colonoscopy: a case series of 12 patients. J Clin Gastroenterol  2010; 44: 562– 6. Google Scholar CrossRef Search ADS PubMed  68 Youngster I, Mahabamunuge J, Systrom HK et al.   Oral, frozen fecal microbiota transplant (FMT) capsules for recurrent Clostridium difficile infection. BMC Med  2016; 14: 134. Google Scholar CrossRef Search ADS PubMed  69 Baro E, Galperine T, Denies F et al.   Cost-effectiveness analysis of five competing strategies for the management of multiple recurrent community-onset Clostridium difficile infection in France. PLoS One  2017; 12: e0170258. Google Scholar CrossRef Search ADS PubMed  70 Konijeti GG, Sauk J, Shrime MG et al.   Cost-effectiveness of competing strategies for management of recurrent Clostridium difficile infection: a decision analysis. Clin Infect Dis  2014; 58: 1507– 14. Google Scholar CrossRef Search ADS PubMed  71 Lapointe-Shaw L, Tran KL, Coyte PC et al.   Cost-effectiveness analysis of six strategies to treat recurrent Clostridium difficile infection. PLoS One  2016; 11: e0149521. Google Scholar CrossRef Search ADS PubMed  72 Petrof EO, Gloor GB, Vanner SJ et al.   Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome  2013; 1: 3. Google Scholar CrossRef Search ADS PubMed  73 Martz SL, Guzman-Rodriguez M, He SM et al.   A human gut ecosystem protects against C. difficile disease by targeting TcdA. J Gastroenterol  2017; 52: 452– 65. Google Scholar CrossRef Search ADS PubMed  74 Surawicz CM. Role of probiotics in antibiotic-associated diarrhea, Clostridium difficile-associated diarrhea, and recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol  2008; 42 (Suppl 2): S64– 70. Google Scholar CrossRef Search ADS PubMed  75 Naaber P, Mikelsaar M. Interactions between Lactobacilli and antibiotic-associated diarrhea. Adv Appl Microbiol  2004; 54: 231– 60. Google Scholar CrossRef Search ADS PubMed  76 Gill HS. Probiotics to enhance anti-infective defences in the gastrointestinal tract. Best Pract Res Clin Gastroenterol  2003; 17: 755– 73. Google Scholar CrossRef Search ADS PubMed  77 Castagliuolo I, Riegler MF, Valenick L et al.   Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infect Immun  1999; 67: 302– 7. Google Scholar PubMed  78 Valdés-Varela L, Alonso-Guervos M, García-Suárez O et al.   Screening of bifidobacteria and lactobacilli able to antagonize the cytotoxic effect of Clostridium difficile upon intestinal epithelial HT29 monolayer. Front Microbiol  2016; 7: 577. Google Scholar PubMed  79 Hempel S, Newberry SJ, Maher AR et al.   Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. JAMA  2012; 307: 1959– 69. Google Scholar CrossRef Search ADS PubMed  80 Ritchie ML, Romanuk TN. A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One  2012; 7: e34938. Google Scholar CrossRef Search ADS PubMed  81 Shen NT, Maw A, Tmanova LL et al.   Timely use of probiotics in hospitalized adults prevents Clostridium difficile infection: a systematic review with meta-regression analysis. Gastroenterology  2017; 152: 1889– 900.e9. Google Scholar CrossRef Search ADS PubMed  82 Johnston BC, Ma SS, Goldenberg JZ et al.   Probiotics for the prevention of Clostridium difficile-associated diarrhea: a systematic review and meta-analysis. Ann Intern Med  2012; 157: 878– 88. Google Scholar CrossRef Search ADS PubMed  83 Castagliuolo I, LaMont JT, Nikulasson ST et al.   Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infect Immun  1996; 64: 5225– 32. Google Scholar PubMed  84 Allen SJ, Wareham K, Wang D et al.   Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhoea and Clostridium difficile diarrhoea in older inpatients (PLACIDE): a randomised, double-blind, placebo-controlled, multicentre trial. Lancet  2013; 382: 1249– 57. Google Scholar CrossRef Search ADS PubMed  85 Trubiano JA, Cheng AC, Korman TM et al.   Australasian Society of Infectious Diseases updated guidelines for the management of Clostridium difficile infection in adults and children in Australia and New Zealand. Intern Med J  2016; 46: 479– 93. Google Scholar CrossRef Search ADS PubMed  86 Cohen SH, Gerding DN, Johnson S et al.   Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol  2010; 31: 431– 55. Google Scholar CrossRef Search ADS PubMed  87 Fehér C, Mensa J. A comparison of current guidelines of five international societies on Clostridium difficile infection management. Infect Dis Ther  2016; 5: 207– 30. Google Scholar CrossRef Search ADS PubMed  88 Bender KO, Garland M, Ferreyra JA et al.   A small-molecule antivirulence agent for treating Clostridium difficile infection. Sci Transl Med  2015; 7: 306ra148. Google Scholar CrossRef Search ADS PubMed  89 Bartoloni A, Mantella A, Goldstein BP et al.   In-vitro activity of nisin against clinical isolates of Clostridium difficile. J Chemother  2004; 16: 119– 21. Google Scholar CrossRef Search ADS PubMed  90 Gerding DN, Meyer T, Lee C et al.   Administration of spores of nontoxigenic Clostridium difficile strain M3 for prevention of recurrent C. difficile infection: a randomized clinical trial. JAMA  2015; 313: 1719– 27. Google Scholar CrossRef Search ADS PubMed  91 Brouwer MS, Roberts AP, Hussain H et al.   Horizontal gene transfer converts non-toxigenic Clostridium difficile strains into toxin producers. Nat Commun  2013; 4: 2601. Google Scholar CrossRef Search ADS PubMed  92 Dingle KE, Griffiths D, Didelot X et al.   Clinical Clostridium difficile: clonality and pathogenicity locus diversity. PLoS One  2011; 6: e19993. Google Scholar CrossRef Search ADS PubMed  93 Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res  2006; 47: 241– 59. Google Scholar CrossRef Search ADS PubMed  94 Giel JL, Sorg JA, Sonenshein AL et al.   Metabolism of bile salts in mice influences spore germination in Clostridium difficile. PLoS One  2010; 5: e8740. Google Scholar CrossRef Search ADS PubMed  95 McCoy RM, Klick A, Hill S et al.   Luminal toxin-binding agents for Clostridium difficile infection. J Pharm Pract  2016; 29: 361– 7. Google Scholar CrossRef Search ADS PubMed  96 Puri BK, Hakkarainen-Smith JS, Monro JA. The potential use of cholestyramine to reduce the risk of developing Clostridium difficile-associated diarrhoea in patients receiving long-term intravenous ceftriaxone. Med Hypotheses  2015; 84: 78– 80. Google Scholar CrossRef Search ADS PubMed  97 Louie TJ, Peppe J, Watt CK et al.   Tolevamer, a novel nonantibiotic polymer, compared with vancomycin in the treatment of mild to moderately severe Clostridium difficile-associated diarrhea. Clin Infect Dis  2006; 43: 411– 20. Google Scholar CrossRef Search ADS PubMed  98 Johnson S, Louie TJ, Gerding DN et al.   Vancomycin, metronidazole, or tolevamer for Clostridium difficile infection: results from two multinational, randomized, controlled trials. Clin Infect Dis  2014; 59: 345– 54. Google Scholar CrossRef Search ADS PubMed  99 Howerton A, Ramirez N, Abel-Santos E. Mapping interactions between germinants and Clostridium difficile spores. J Bacteriol  2011; 193: 274– 82. Google Scholar CrossRef Search ADS PubMed  100 Howerton A, Patra M, Abel-Santos E. A new strategy for the prevention of Clostridium difficile infection. J Infect Dis  2013; 207: 1498– 504. Google Scholar CrossRef Search ADS PubMed  101 Winston JA, Theriot CM. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. Anaerobe  2016; 41: 44– 50. Google Scholar CrossRef Search ADS PubMed  102 Weingarden AR, Dosa PI, DeWinter E et al.   Changes in colonic bile acid composition following fecal microbiota transplantation are sufficient to control Clostridium difficile germination and growth. PLoS One  2016; 11: e0147210. Google Scholar CrossRef Search ADS PubMed  103 Weingarden AR, Chen C, Zhang N et al.   Ursodeoxycholic acid inhibits Clostridium difficile spore germination and vegetative growth, and prevents the recurrence of ileal pouchitis associated with the infection. J Clin Gastroenterol  2016; 50: 624– 30. Google Scholar CrossRef Search ADS PubMed  104 Wilcox MH, Gerding DN, Poxton IR et al.   Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N Engl J Med  2017; 376: 305– 17. Google Scholar CrossRef Search ADS PubMed  105 Orth P, Xiao L, Hernandez LD et al.   Mechanism of action and epitopes of Clostridium difficile toxin B-neutralizing antibody bezlotoxumab revealed by X-ray crystallography. J Biol Chem  2014; 289: 18008– 21. Google Scholar CrossRef Search ADS PubMed  106 Secore S, Wang S, Doughtry J et al.   Development of a novel vaccine containing binary toxin for the prevention of Clostridium difficile disease with enhanced efficacy against NAP1 strains. PLoS One  2017; 12: e0170640. Google Scholar CrossRef Search ADS PubMed  107 Sponseller JK, Steele JA, Schmidt DJ et al.   Hyperimmune bovine colostrum as a novel therapy to combat Clostridium difficile infection. J Infect Dis  2015; 211: 1334– 41. Google Scholar PubMed  108 Hutton ML, Cunningham BA, Mackin KE et al.   Bovine antibodies targeting primary and recurrent Clostridium difficile disease are a potent antibiotic alternative. Sci Rep  2017; 7: 3665. Google Scholar CrossRef Search ADS PubMed  109 Branda SS, Vik S, Friedman L et al.   Biofilms: the matrix revisited. Trends Microbiol  2005; 13: 20– 6. Google Scholar CrossRef Search ADS PubMed  110 Dapa T, Unnikrishnan M. Biofilm formation by Clostridium difficile. Gut Microbes  2013; 4: 397– 402. Google Scholar CrossRef Search ADS PubMed  111 Dawson LF, Valiente E, Faulds-Pain A et al.   Characterisation of Clostridium difficile biofilm formation, a role for Spo0A. PLoS One  2012; 7: e50527. Google Scholar CrossRef Search ADS PubMed  112 Nale JY, Chutia M, Carr P et al.   ‘Get in early’; biofilm and wax moth (Galleria mellonella) models reveal new insights into the therapeutic potential of Clostridium difficile bacteriophages. Front Microbiol  2016; 7: 1383. Google Scholar CrossRef Search ADS PubMed  © The Author(s) 2017. Published by Oxford University Press and Sixth Affiliated Hospital of Sun Yat-Sen University This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Journal

Gastroenterology ReportOxford University Press

Published: Feb 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial