The TNF receptor family member Fn14 is highly expressed in recurrent glioblastoma and in GBM patient-derived xenografts with acquired temozolomide resistance

The TNF receptor family member Fn14 is highly expressed in recurrent glioblastoma and in GBM... BackgroundGlioblastoma (GBM) is a difficult to treat brain cancer that nearly uniformly recurs, and recurrent tumors are largely therapy resistant. Our prior work has demonstrated an important role for the tumor necrosis factor–like weak inducer of apoptosis (TWEAK) receptor fibroblast growth factor–inducible 14 (Fn14) in GBM pathobiology. In this study, we investigated Fn14 expression in recurrent GBM and in the setting of temozolomide (TMZ) resistance.MethodsFn14 mRNA expression levels in nonneoplastic brain, primary (newly diagnosed) GBM, and recurrent GBM (post-chemotherapy and radiation) specimens were obtained from The Cancer Genome Atlas data portal. Immunohistochemistry was performed using nonneoplastic brain, patient-matched primary and recurrent GBM, and gliosarcoma (GSM) specimens to examine Fn14 protein levels. Western blot analysis was used to compare Fn14 expression in parental TMZ-sensitive or matched TMZ-resistant patient-derived xenografts (PDXs) established from primary or recurrent tumor samples. The migratory capacity of control and Fn14-depleted TMZ-resistant GBM cells was assessed using the transwell migration assay.ResultsWe found that Fn14 is more highly expressed in recurrent GBM tumors than their matched primary GBM counterparts. Fn14 expression is also significantly elevated in GSM tumors. GBM PDX cells with acquired TMZ resistance have higher Fn14 levels and greater migratory capacity than their corresponding parental TMZ-sensitive cells, and the migratory difference is due, at least in part, to Fn14 expression in the TMZ-resistant cells.ConclusionsThis study demonstrates that the Fn14 gene is highly expressed in recurrent GBM, GSM, and TMZ-resistant GBM PDX tumors. These findings suggest that Fn14 may be a valuable therapeutic target or drug delivery portal for treatment of recurrent GBM and GSM patients. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuro-Oncology Oxford University Press

The TNF receptor family member Fn14 is highly expressed in recurrent glioblastoma and in GBM patient-derived xenografts with acquired temozolomide resistance

Loading next page...
 
/lp/ou_press/the-tnf-receptor-family-member-fn14-is-highly-expressed-in-recurrent-4GBxdAT10n
Publisher site
See Article on Publisher Site

Abstract

BackgroundGlioblastoma (GBM) is a difficult to treat brain cancer that nearly uniformly recurs, and recurrent tumors are largely therapy resistant. Our prior work has demonstrated an important role for the tumor necrosis factor–like weak inducer of apoptosis (TWEAK) receptor fibroblast growth factor–inducible 14 (Fn14) in GBM pathobiology. In this study, we investigated Fn14 expression in recurrent GBM and in the setting of temozolomide (TMZ) resistance.MethodsFn14 mRNA expression levels in nonneoplastic brain, primary (newly diagnosed) GBM, and recurrent GBM (post-chemotherapy and radiation) specimens were obtained from The Cancer Genome Atlas data portal. Immunohistochemistry was performed using nonneoplastic brain, patient-matched primary and recurrent GBM, and gliosarcoma (GSM) specimens to examine Fn14 protein levels. Western blot analysis was used to compare Fn14 expression in parental TMZ-sensitive or matched TMZ-resistant patient-derived xenografts (PDXs) established from primary or recurrent tumor samples. The migratory capacity of control and Fn14-depleted TMZ-resistant GBM cells was assessed using the transwell migration assay.ResultsWe found that Fn14 is more highly expressed in recurrent GBM tumors than their matched primary GBM counterparts. Fn14 expression is also significantly elevated in GSM tumors. GBM PDX cells with acquired TMZ resistance have higher Fn14 levels and greater migratory capacity than their corresponding parental TMZ-sensitive cells, and the migratory difference is due, at least in part, to Fn14 expression in the TMZ-resistant cells.ConclusionsThis study demonstrates that the Fn14 gene is highly expressed in recurrent GBM, GSM, and TMZ-resistant GBM PDX tumors. These findings suggest that Fn14 may be a valuable therapeutic target or drug delivery portal for treatment of recurrent GBM and GSM patients.

Journal

Neuro-OncologyOxford University Press

Published: Sep 3, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off