The evolutionary endocrinology of circulating glucocorticoids in free-living vertebrates: recent advances and future directions across scales of study

The evolutionary endocrinology of circulating glucocorticoids in free-living vertebrates: recent... Synopsis Circulating glucocorticoid hormone concentrations are dynamic, flexible, and promote adaptive responses following perturbations in an animal’s environment. As a result, circulating glucocorticoid levels are thought to shape fitness and have been suggested to be a key trait for predicting how species will cope with novel environmental change. Nevertheless, the factors that shape variation in glucocorticoid-mediated coping mechanisms remain unclear because the evolutionary underpinnings of the function and regulation of these hormones are poorly understood. Here, I summarize recent advances in our understanding of the evolution of circulating glucocorticoids, which have included (i) longitudinal studies exploring microevolutionary processes that shape within- and between-individual variation in glucocorticoids, (ii) interspecific comparative studies highlighting macro-evolutionary patterns of among-species variation in glucocorticoids, and (iii) intraspecific comparative studies which help to disentangle the relative roles of environment, life-history and behaviour in shaping among-population variation in glucocorticoids. Important avenues for future research will include exploring how natural selection may act on different components of the hypothalamus-pituitary-adrenal axis, characterizing patterns of phenotypic plasticity in circulating glucocorticoids across populations and species, as well as exploring how microevolutionary processes differ across taxa or gradients of environmental conditions. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Integrative and Comparative Biology Oxford University Press

The evolutionary endocrinology of circulating glucocorticoids in free-living vertebrates: recent advances and future directions across scales of study

Loading next page...
 
/lp/ou_press/the-evolutionary-endocrinology-of-circulating-glucocorticoids-in-free-ItWw1QE9jV
Publisher
Oxford University Press
Copyright
© The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
ISSN
1540-7063
eISSN
1557-7023
D.O.I.
10.1093/icb/icy048
Publisher site
See Article on Publisher Site

Abstract

Synopsis Circulating glucocorticoid hormone concentrations are dynamic, flexible, and promote adaptive responses following perturbations in an animal’s environment. As a result, circulating glucocorticoid levels are thought to shape fitness and have been suggested to be a key trait for predicting how species will cope with novel environmental change. Nevertheless, the factors that shape variation in glucocorticoid-mediated coping mechanisms remain unclear because the evolutionary underpinnings of the function and regulation of these hormones are poorly understood. Here, I summarize recent advances in our understanding of the evolution of circulating glucocorticoids, which have included (i) longitudinal studies exploring microevolutionary processes that shape within- and between-individual variation in glucocorticoids, (ii) interspecific comparative studies highlighting macro-evolutionary patterns of among-species variation in glucocorticoids, and (iii) intraspecific comparative studies which help to disentangle the relative roles of environment, life-history and behaviour in shaping among-population variation in glucocorticoids. Important avenues for future research will include exploring how natural selection may act on different components of the hypothalamus-pituitary-adrenal axis, characterizing patterns of phenotypic plasticity in circulating glucocorticoids across populations and species, as well as exploring how microevolutionary processes differ across taxa or gradients of environmental conditions. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)

Journal

Integrative and Comparative BiologyOxford University Press

Published: Jun 4, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off