TEcandidates: Prediction of genomic origin of expressed Transposable Elements using RNA-seq data

TEcandidates: Prediction of genomic origin of expressed Transposable Elements using RNA-seq data Abstract Motivation In recent years, Transposable Elements (TEs) have been related to gene regulation. However, estimating the origin of expression of TEs through RNA-seq is complicated by multimapping reads coming from their repetitive sequences. Current approaches that address multimapping reads are focused in expression quantification and not in finding the origin of expression. Addressing the genomic origin of expressed TEs could further aid in understanding the role that TEs might have in the cell. Results We have developed a new pipeline called TEcandidates, based on de novo transcriptome assembly to assess the instances of TEs being expressed, along with their location, to include in downstream DE analysis. TEcandidates takes as input the RNA-seq data, the genome sequence and the TE annotation file, and returns a list of coordinates of candidate TEs being expressed, the TEs that have been removed, and the genome sequence with removed TEs as masked. This masked genome is suited to include TEs in downstream expression analysis, as the ambiguity of reads coming from TEs is significantly reduced in the mapping step of the analysis. Availability The script which runs the pipeline can be downloaded at http://www.mobilomics.org/tecandidates/downloads or http://github.com/TEcandidates/TEcandidates Contact griadi@utalca.cl Supplementary information Supplementary data are available at Bioinformatics online. © The Author(s) (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bioinformatics Oxford University Press

TEcandidates: Prediction of genomic origin of expressed Transposable Elements using RNA-seq data

Loading next page...
 
/lp/ou_press/tecandidates-prediction-of-genomic-origin-of-expressed-transposable-OuZ3JUKcPk
Publisher
Oxford University Press
Copyright
© The Author(s) (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
ISSN
1367-4803
eISSN
1460-2059
D.O.I.
10.1093/bioinformatics/bty423
Publisher site
See Article on Publisher Site

Abstract

Abstract Motivation In recent years, Transposable Elements (TEs) have been related to gene regulation. However, estimating the origin of expression of TEs through RNA-seq is complicated by multimapping reads coming from their repetitive sequences. Current approaches that address multimapping reads are focused in expression quantification and not in finding the origin of expression. Addressing the genomic origin of expressed TEs could further aid in understanding the role that TEs might have in the cell. Results We have developed a new pipeline called TEcandidates, based on de novo transcriptome assembly to assess the instances of TEs being expressed, along with their location, to include in downstream DE analysis. TEcandidates takes as input the RNA-seq data, the genome sequence and the TE annotation file, and returns a list of coordinates of candidate TEs being expressed, the TEs that have been removed, and the genome sequence with removed TEs as masked. This masked genome is suited to include TEs in downstream expression analysis, as the ambiguity of reads coming from TEs is significantly reduced in the mapping step of the analysis. Availability The script which runs the pipeline can be downloaded at http://www.mobilomics.org/tecandidates/downloads or http://github.com/TEcandidates/TEcandidates Contact griadi@utalca.cl Supplementary information Supplementary data are available at Bioinformatics online. © The Author(s) (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)

Journal

BioinformaticsOxford University Press

Published: Jun 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off