Role of quorum sensing and chemical communication in fungal biotechnology and pathogenesis

Role of quorum sensing and chemical communication in fungal biotechnology and pathogenesis Abstract Microbial cells do not live in isolation in their environment, but rather they communicate with each other using chemical signals. This sophisticated mode of cell-to-cell signalling, known as quorum sensing, was first discovered in bacteria, and coordinates the behaviour of microbial population behaviour in a cell-density dependent manner. More recently, these mechanisms have been described in eukaryotes, particularly in fungi, where they regulate processes such as pathogenesis, morphological differentiation, secondary metabolite production and biofilm formation. In this manuscript, we review the information available to date on these processes in yeast, dimorphic fungi and filamentous fungi. We analyse the diverse chemical ‘languages’ used by different groups of fungi, their possible cross-talk and interkingdom interactions with other organisms. We discuss the existence of these mechanisms in multicellular organisms, the ecophysiological role of QS in fungal colonisation, and the potential applications of these mechanisms in biotechnology and pathogenesis. One sentence summary This review focuses on the complexity of quorum sensing mechanisms in fungi and its potential applications. cell-to-cell signalling, yeast, dimorphic, filamentous fungi, farnesol, consortia © FEMS 2018. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png FEMS Microbiology Reviews Oxford University Press

Role of quorum sensing and chemical communication in fungal biotechnology and pathogenesis

Loading next page...
 
/lp/ou_press/role-of-quorum-sensing-and-chemical-communication-in-fungal-D4X0YTLx7N
Publisher
Blackwell
Copyright
© FEMS 2018.
ISSN
0168-6445
eISSN
1574-6976
D.O.I.
10.1093/femsre/fuy022
Publisher site
See Article on Publisher Site

Abstract

Abstract Microbial cells do not live in isolation in their environment, but rather they communicate with each other using chemical signals. This sophisticated mode of cell-to-cell signalling, known as quorum sensing, was first discovered in bacteria, and coordinates the behaviour of microbial population behaviour in a cell-density dependent manner. More recently, these mechanisms have been described in eukaryotes, particularly in fungi, where they regulate processes such as pathogenesis, morphological differentiation, secondary metabolite production and biofilm formation. In this manuscript, we review the information available to date on these processes in yeast, dimorphic fungi and filamentous fungi. We analyse the diverse chemical ‘languages’ used by different groups of fungi, their possible cross-talk and interkingdom interactions with other organisms. We discuss the existence of these mechanisms in multicellular organisms, the ecophysiological role of QS in fungal colonisation, and the potential applications of these mechanisms in biotechnology and pathogenesis. One sentence summary This review focuses on the complexity of quorum sensing mechanisms in fungi and its potential applications. cell-to-cell signalling, yeast, dimorphic, filamentous fungi, farnesol, consortia © FEMS 2018. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)

Journal

FEMS Microbiology ReviewsOxford University Press

Published: May 18, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off