Phylogenetic Tools for Generalized HIV-1 Epidemics: Findings from the PANGEA-HIV Methods Comparison

Phylogenetic Tools for Generalized HIV-1 Epidemics: Findings from the PANGEA-HIV Methods Comparison Viral phylogenetic methods contribute to understanding how HIV spreads in populations, and thereby help guide the design of prevention interventions. So far, most analyses have been applied to well-sampled concentrated HIV-1 epidemics in wealthy countries. To direct the use of phylogenetic tools to where the impact of HIV-1 is greatest, the Phylogenetics And Networks for Generalized HIV Epidemics in Africa (PANGEA-HIV) consortium generates full-genome viral sequences from across sub-Saharan Africa. Analyzing these data presents new challenges, since epidemics are principally driven by heterosexual transmission and a smaller fraction of cases is sampled. Here, we show that viral phylogenetic tools can be adapted and used to estimate epidemiological quantities of central importance to HIV-1 prevention in sub-Saharan Africa. We used a community-wide methods comparison exercise on simulated data, where participants were blinded to the true dynamics they were inferring. Two distinct simulations captured generalized HIV-1 epidemics, before and after a large community-level intervention that reduced infection levels. Five research groups participated. Structured coalescent modeling approaches were most successful: phylogenetic estimates of HIV-1 incidence, incidence reductions, and the proportion of transmissions from individuals in their first 3 months of infection correlated with the true values (Pearson correlation > 90%), with small bias. However, on some simulations, true values were markedly outside reported confidence or credibility intervals. The blinded comparison revealed current limits and strengths in using HIV phylogenetics in challenging settings, provided benchmarks for future methods’ development, and supports using the latest generation of phylogenetic tools to advance HIV surveillance and prevention. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular Biology and Evolution Oxford University Press

Loading next page...
 
/lp/ou_press/phylogenetic-tools-for-generalized-hiv-1-epidemics-findings-from-the-5OidOYUbtJ
Publisher
Oxford University Press
Copyright
© The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
ISSN
0737-4038
eISSN
1537-1719
D.O.I.
10.1093/molbev/msw217
Publisher site
See Article on Publisher Site

Abstract

Viral phylogenetic methods contribute to understanding how HIV spreads in populations, and thereby help guide the design of prevention interventions. So far, most analyses have been applied to well-sampled concentrated HIV-1 epidemics in wealthy countries. To direct the use of phylogenetic tools to where the impact of HIV-1 is greatest, the Phylogenetics And Networks for Generalized HIV Epidemics in Africa (PANGEA-HIV) consortium generates full-genome viral sequences from across sub-Saharan Africa. Analyzing these data presents new challenges, since epidemics are principally driven by heterosexual transmission and a smaller fraction of cases is sampled. Here, we show that viral phylogenetic tools can be adapted and used to estimate epidemiological quantities of central importance to HIV-1 prevention in sub-Saharan Africa. We used a community-wide methods comparison exercise on simulated data, where participants were blinded to the true dynamics they were inferring. Two distinct simulations captured generalized HIV-1 epidemics, before and after a large community-level intervention that reduced infection levels. Five research groups participated. Structured coalescent modeling approaches were most successful: phylogenetic estimates of HIV-1 incidence, incidence reductions, and the proportion of transmissions from individuals in their first 3 months of infection correlated with the true values (Pearson correlation > 90%), with small bias. However, on some simulations, true values were markedly outside reported confidence or credibility intervals. The blinded comparison revealed current limits and strengths in using HIV phylogenetics in challenging settings, provided benchmarks for future methods’ development, and supports using the latest generation of phylogenetic tools to advance HIV surveillance and prevention.

Journal

Molecular Biology and EvolutionOxford University Press

Published: Jan 1, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off