Pediatric Temporal Lobe Epilepsy Surgery in Bonn and Review of the Literature

Pediatric Temporal Lobe Epilepsy Surgery in Bonn and Review of the Literature Abstract BACKGROUND Epilepsy surgery is well established as safe and successful for children with temporal lobe epilepsy (TLE). Despite evidence from available data, there remains some reluctance to refer children with medically refractory epilepsy for preoperative evaluation and workup for possible surgery. OBJECTIVE To present the largest case series of pediatric (TLE) patients thus far, in order to better understand the predictability of preoperative evaluation on seizure outcome, and to better understand longitudinal outcomes in a large pediatric cohort. METHODS One hundred eighty-three pediatric patients with TLE who underwent surgical treatment between 1988 and 2012 were retrospectively reviewed. Preoperative seizure history, noninvasive and invasive preoperative evaluation, surgical results, pathological results, long-term seizure outcomes, and complications were evaluated. A review of pediatric TLE in the literature was also undertaken to better understand reported complications and long-term outcomes. RESULTS Mean follow-up was 42 mo (range 12-152 mo); 155 patients had good seizure outcomes (Engel I/II; 84.8%) and 28 patients had poor seizure outcomes (Engel III/IV; 15.2%); 145 patients were Engel I (78.8%). Only 10 patients did not have worthwhile improvement (Engel class IV; 5.4%). A review of the literature identified 2089 unique cases of pediatric TLE. Satisfactory seizure outcomes occurred in 1629 patients (79%) with unsatisfactory outcomes in 433 patients (21%). CONCLUSION Pediatric patients benefit from surgery for medically refractory TLE with an acceptable safety profile regardless of histopathological diagnosis, seizure frequency, or seizure type. Seizure freedom appears to have extensive durability in a significant proportion of surgically treated patients. Pediatric temporal lobe epilepsy, Epilepsy surgery ABBREVIATIONS ABBREVIATIONS AH amygdalohippocampectomy ATL anterior temporal lobectomy EEG electroencephalogram MRI magnetic resonance imaging MTS mesial temporal sclerosis TLE temporal lobe epilepsy WHO World Health Organization Selected cases of temporal lobe epilepsy (TLE) have long proven to be benefited by surgical treatment.1-6 Surgical experience and advances in imaging and technology have resulted in improved surgical outcomes, with better outcomes reported in more recent series (see Table 1).1-66 This is likely due to a combination of high-resolution magnetic resonance imaging (MRI) techniques, microneurosurgery, and better methods of patient selection both with invasive and noninvasive monitoring.67-69 Epilepsy surgery is well established as safe and successful for children with TLE. Despite evidence from available data, there remains some reluctance to refer children with medically refractory epilepsy for preoperative evaluation and workup for possible surgery. Recently, there has also been some suggestion of loss of efficacy of surgical benefit over time, potentially adding to this reluctance.38 In this study, we present the largest series of pediatric TLE patients ever reported in order to better understand longitudinal outcomes in a pediatric cohort, examine the predictability of various factors on seizure outcome, better describe neuropsychological outcomes in children after surgical treatment forTLE, and to assess overall published efficacy of TLE surgery (see Table 1). TABLE 1. Pediatric Temporal Lobe Epilepsy Series Reported in the Literature     Surgery  Pathology  Complications        Publication  Patients  ATL  AH  Lx  MTS  Tumor  Dysplasia  Other  Permanent neuro deficit (excl. vision)  Hematoma  visual field deficit  Infection  Reoperation  Overall complication rate (%)  Engel I/II  Engel III/IV  Comments  Davidson and Falconer, 19752  40  40  0  0  24  12  0  8  NR  NR  NR  NR  NR  NR  31  9    Green and Pootrakul, 19824  32  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  26  6    Vaernet et al, 19835  33  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  20  13    Rasmussen, 19833  99  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  59  40    Meyer et al, 19866  50  50  0  0  NR  6  NR  NR  1  0  20  2  NR  8  39  11    Rutledge et al, 198713  3  0  0  2  0  3  0  0  NR  NR  NR  NR  NR  NR  3  0  third case biopsy only of AA  Drake et al, 198714  16  16  0  0  8  12  NR  4  NR  NR  NR  NR  NR  NR  9  7    Harbord and Manson, 198715  16  16  0  0  NR  9  1  6  NR  NR  NR  NR  NR  NR  11  4    Adams et al, 199016  44  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  29  15    Mizrahi et al, 199017  8  8  0  0  3  0  0  5  NR  NR  NR  NR  NR  NR  3  5    Hopkins and Klug, 199118  11  10  0  1  1  5  1  4  2  NR  2  NR  NR  NR  8  3    Duchowny et al, 199219  16  16  0  0  1  4  1  10  0  NR  NR  2  NR  NR  11  5    Adelson et al, 199220  33  33  0  0  5  16  9  13  NR  NR  NR  NR  NR  6  23  10    Jay et al, 199321  20  NR  NR  NR  12  10  3  3  NR  NR  NR  NR  NR  NR  12  8    Goldstein et al, 199639  33  33  0  0  6  8  NR  23  NR  NR  NR  NR  NR  NR  15  18    Bizzi et al, 199740  14  14  0  0  2  3  2  12  0  0  1  0  NR  21.4  11  3    Blume et al, 199723  14  14  0  0  7  8  NR  5  NR  NR  NR  NR  NR  NR  13  1    Gilliam et al, 199722  18  NR  NR  NR  2  10  6  3  0  NR  NR  NR  NR  NR  13  5    Salanova et al, 199824  3  3  0  0  3  0  0  0  NR  NR  NR  NR  NR  NR  2  1    Szabo et al, 199825  14  14  0  0  4  7  2  1  NR  NR  NR  NR  NR  NR  13  1    Williams et al, 199826  9  9  0  0  5  1  0  3  NR  NR  NR  NR  NR  NR  8  1    Gashlan et al, 199941  39  NR  NR  NR  NR  11  NR  NR  NR  NR  NR  NR  NR  NR  26  13    Khajavi et al, 199942  23  23  0  0  1  23  0  NR  NR  NR  NR  NR  NR  NR  19  4    Munari et al, 199927  21  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  2.1  21  0    Iannelli et al, 200028  32  0  0  32  0  32  0  0  NR  NR  NR  NR  NR  NR  30  2    Robinson et al, 200029  21  0  22  0  21  NR  NR  NR  2  0  1  1  NR  13.6  15  6    Paolicchi et al, 200030  29  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  19  10    Mohamed et al, 200131  34  34  0  0  15  NR  8  NR  NR  NR  NR  NR  NR  NR  26  7    Sotero de Menezes et al, 200143  15  11  11  4  10  4  1  1  1  NR  NR  NR  3  NR  7  8    Sinclair et al, 200344  42  42  0  0  13  17  4  12  NR  NR  NR  NR  NR  4  33  9    Cataltepe et al, 200545  29  23  12  6  2  29  0  0  0  0  4  1  2  17.2  24  5    Freitag et al, 200546  16  NR  NR  NR  1  13  2  0  NR  NR  NR  NR  NR  NR  16  0    Korkman et al, 200547  23  NR  NR  NR  NR  9  1  16  NR  NR  NR  NR  NR  NR  21  2    McLellan et al, 200548  60  NR  NR  NR  33  23  6  6  NR  NR  NR  NR  NR  NR  37  20    Mittal et al, 200533  109  77  20  12  49  38  38  11  0  2  1  0  23  5.5  94  15    Terra-Bustamante et al, 200549  35  34  1  0  19  7  14  2  0  NR  1  NR  2  NR  31  4    Benifla et al, 200650  126  45  75  6  16  64  12  34  1  NR  18  4  13  5  80  26    Larysz et al, 200751  1  1  0  0  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  1  0    Liu et al, 200752  9  9  0  0  9  0  0  0  NR  NR  NR  NR  NR  NR  8  1    Maton et al, 200835  20  NR  NR  NR  1  8  8  3  2  0  NR  1  2  15  16  4    Kim et al, 200835  59  47  1  11  16  32  33  2  5  1  13  7  4  6.7  53  6    Kan et al, 200836  33  NR  NR  NR  19  NR  NR  NR  0  0  NR  NR  NR  5  28  5    de Koning et al, 200953  24  24  0  0  7  13  2  4  NR  NR  NR  NR  NR  NR  23  1    Lee et al, 200954  15  10  0  5  3  15  13  0  NR  NR  NR  NR  NR  NR  15  0    Hemb et al, (includes  58  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  9  46  12    Mathern et al, 1999), 201055                                    Lee et al, 201037  19  5  14  0  11  5  9  NR  0  NR  11  NR  12  15.7  17  2    Lopez et al, 201056  52  11  31  3  20  14  26  16  NR  NR  NR  NR  NR  NR  49  3    Ogiwara et al, 201057  18  0  1  18  0  18  NR  NR  NR  NR  NR  NR  NR  NR  18  0    Zupanc et al, 201058  19  19  0  0  10  NR  NR  NR  NR  NR  NR  NR  NR  NR  18  1    Cersosimo et al, 201159  38  32  6  0  38  0  0  NR  NR  NR  NR  NR  NR  NR  38  0    Dagar et al, 201160  43  NR  24  NR  26  NR  NR  NR  NR  NR  NR  NR  NR  NR  35  8    Garcia-Fernandez et al, 201161  13  2  0  11  0  13  2  0  NR  NR  NR  NR  3  NR  13  0    Jayalakshmi et al, 201162  53  NR  NR  NR  30  NR  NR  NR  NR  NR  NR  NR  NR  NR  42  9    Lopez-Gonzalez et al, 201238  130  6  106  18  70  33  54  13  0  2  2  1  4  7  93  37    Skirrow et al, 201263  42  42  0  0  26  16  0  0  NR  NR  NR  NR  NR  NR  36  6    Uliel-Sibony et al, 201164  41  0  12  41  0  41  0  0  NR  NR  NR  NR  2  NR  34  7    Kasasbeh et al, 201265  25  10  15  0  8  0  0  13  NR  NR  NR  NR  NR  NR  19  6    Dwivedi et al, 201766  14  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  14  0    This series (includes Clusmann  183  58  52  73  60  80  18  25  3  3  39  9  9  9.8  155  28    et al, 20041), 2018                                    Total  2089  841  403  243  617  672  276  258  17  8  113  28  79    1629  433    Total percent    56.6  27.1  16.3  29.5  32.1  13.2  12.3  1.9  1.2  14.4  3.7  10.1  9.4  79.0  21.0        Surgery  Pathology  Complications        Publication  Patients  ATL  AH  Lx  MTS  Tumor  Dysplasia  Other  Permanent neuro deficit (excl. vision)  Hematoma  visual field deficit  Infection  Reoperation  Overall complication rate (%)  Engel I/II  Engel III/IV  Comments  Davidson and Falconer, 19752  40  40  0  0  24  12  0  8  NR  NR  NR  NR  NR  NR  31  9    Green and Pootrakul, 19824  32  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  26  6    Vaernet et al, 19835  33  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  20  13    Rasmussen, 19833  99  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  59  40    Meyer et al, 19866  50  50  0  0  NR  6  NR  NR  1  0  20  2  NR  8  39  11    Rutledge et al, 198713  3  0  0  2  0  3  0  0  NR  NR  NR  NR  NR  NR  3  0  third case biopsy only of AA  Drake et al, 198714  16  16  0  0  8  12  NR  4  NR  NR  NR  NR  NR  NR  9  7    Harbord and Manson, 198715  16  16  0  0  NR  9  1  6  NR  NR  NR  NR  NR  NR  11  4    Adams et al, 199016  44  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  29  15    Mizrahi et al, 199017  8  8  0  0  3  0  0  5  NR  NR  NR  NR  NR  NR  3  5    Hopkins and Klug, 199118  11  10  0  1  1  5  1  4  2  NR  2  NR  NR  NR  8  3    Duchowny et al, 199219  16  16  0  0  1  4  1  10  0  NR  NR  2  NR  NR  11  5    Adelson et al, 199220  33  33  0  0  5  16  9  13  NR  NR  NR  NR  NR  6  23  10    Jay et al, 199321  20  NR  NR  NR  12  10  3  3  NR  NR  NR  NR  NR  NR  12  8    Goldstein et al, 199639  33  33  0  0  6  8  NR  23  NR  NR  NR  NR  NR  NR  15  18    Bizzi et al, 199740  14  14  0  0  2  3  2  12  0  0  1  0  NR  21.4  11  3    Blume et al, 199723  14  14  0  0  7  8  NR  5  NR  NR  NR  NR  NR  NR  13  1    Gilliam et al, 199722  18  NR  NR  NR  2  10  6  3  0  NR  NR  NR  NR  NR  13  5    Salanova et al, 199824  3  3  0  0  3  0  0  0  NR  NR  NR  NR  NR  NR  2  1    Szabo et al, 199825  14  14  0  0  4  7  2  1  NR  NR  NR  NR  NR  NR  13  1    Williams et al, 199826  9  9  0  0  5  1  0  3  NR  NR  NR  NR  NR  NR  8  1    Gashlan et al, 199941  39  NR  NR  NR  NR  11  NR  NR  NR  NR  NR  NR  NR  NR  26  13    Khajavi et al, 199942  23  23  0  0  1  23  0  NR  NR  NR  NR  NR  NR  NR  19  4    Munari et al, 199927  21  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  2.1  21  0    Iannelli et al, 200028  32  0  0  32  0  32  0  0  NR  NR  NR  NR  NR  NR  30  2    Robinson et al, 200029  21  0  22  0  21  NR  NR  NR  2  0  1  1  NR  13.6  15  6    Paolicchi et al, 200030  29  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  19  10    Mohamed et al, 200131  34  34  0  0  15  NR  8  NR  NR  NR  NR  NR  NR  NR  26  7    Sotero de Menezes et al, 200143  15  11  11  4  10  4  1  1  1  NR  NR  NR  3  NR  7  8    Sinclair et al, 200344  42  42  0  0  13  17  4  12  NR  NR  NR  NR  NR  4  33  9    Cataltepe et al, 200545  29  23  12  6  2  29  0  0  0  0  4  1  2  17.2  24  5    Freitag et al, 200546  16  NR  NR  NR  1  13  2  0  NR  NR  NR  NR  NR  NR  16  0    Korkman et al, 200547  23  NR  NR  NR  NR  9  1  16  NR  NR  NR  NR  NR  NR  21  2    McLellan et al, 200548  60  NR  NR  NR  33  23  6  6  NR  NR  NR  NR  NR  NR  37  20    Mittal et al, 200533  109  77  20  12  49  38  38  11  0  2  1  0  23  5.5  94  15    Terra-Bustamante et al, 200549  35  34  1  0  19  7  14  2  0  NR  1  NR  2  NR  31  4    Benifla et al, 200650  126  45  75  6  16  64  12  34  1  NR  18  4  13  5  80  26    Larysz et al, 200751  1  1  0  0  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  1  0    Liu et al, 200752  9  9  0  0  9  0  0  0  NR  NR  NR  NR  NR  NR  8  1    Maton et al, 200835  20  NR  NR  NR  1  8  8  3  2  0  NR  1  2  15  16  4    Kim et al, 200835  59  47  1  11  16  32  33  2  5  1  13  7  4  6.7  53  6    Kan et al, 200836  33  NR  NR  NR  19  NR  NR  NR  0  0  NR  NR  NR  5  28  5    de Koning et al, 200953  24  24  0  0  7  13  2  4  NR  NR  NR  NR  NR  NR  23  1    Lee et al, 200954  15  10  0  5  3  15  13  0  NR  NR  NR  NR  NR  NR  15  0    Hemb et al, (includes  58  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  9  46  12    Mathern et al, 1999), 201055                                    Lee et al, 201037  19  5  14  0  11  5  9  NR  0  NR  11  NR  12  15.7  17  2    Lopez et al, 201056  52  11  31  3  20  14  26  16  NR  NR  NR  NR  NR  NR  49  3    Ogiwara et al, 201057  18  0  1  18  0  18  NR  NR  NR  NR  NR  NR  NR  NR  18  0    Zupanc et al, 201058  19  19  0  0  10  NR  NR  NR  NR  NR  NR  NR  NR  NR  18  1    Cersosimo et al, 201159  38  32  6  0  38  0  0  NR  NR  NR  NR  NR  NR  NR  38  0    Dagar et al, 201160  43  NR  24  NR  26  NR  NR  NR  NR  NR  NR  NR  NR  NR  35  8    Garcia-Fernandez et al, 201161  13  2  0  11  0  13  2  0  NR  NR  NR  NR  3  NR  13  0    Jayalakshmi et al, 201162  53  NR  NR  NR  30  NR  NR  NR  NR  NR  NR  NR  NR  NR  42  9    Lopez-Gonzalez et al, 201238  130  6  106  18  70  33  54  13  0  2  2  1  4  7  93  37    Skirrow et al, 201263  42  42  0  0  26  16  0  0  NR  NR  NR  NR  NR  NR  36  6    Uliel-Sibony et al, 201164  41  0  12  41  0  41  0  0  NR  NR  NR  NR  2  NR  34  7    Kasasbeh et al, 201265  25  10  15  0  8  0  0  13  NR  NR  NR  NR  NR  NR  19  6    Dwivedi et al, 201766  14  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  14  0    This series (includes Clusmann  183  58  52  73  60  80  18  25  3  3  39  9  9  9.8  155  28    et al, 20041), 2018                                    Total  2089  841  403  243  617  672  276  258  17  8  113  28  79    1629  433    Total percent    56.6  27.1  16.3  29.5  32.1  13.2  12.3  1.9  1.2  14.4  3.7  10.1  9.4  79.0  21.0    View Large TABLE 1. Pediatric Temporal Lobe Epilepsy Series Reported in the Literature     Surgery  Pathology  Complications        Publication  Patients  ATL  AH  Lx  MTS  Tumor  Dysplasia  Other  Permanent neuro deficit (excl. vision)  Hematoma  visual field deficit  Infection  Reoperation  Overall complication rate (%)  Engel I/II  Engel III/IV  Comments  Davidson and Falconer, 19752  40  40  0  0  24  12  0  8  NR  NR  NR  NR  NR  NR  31  9    Green and Pootrakul, 19824  32  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  26  6    Vaernet et al, 19835  33  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  20  13    Rasmussen, 19833  99  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  59  40    Meyer et al, 19866  50  50  0  0  NR  6  NR  NR  1  0  20  2  NR  8  39  11    Rutledge et al, 198713  3  0  0  2  0  3  0  0  NR  NR  NR  NR  NR  NR  3  0  third case biopsy only of AA  Drake et al, 198714  16  16  0  0  8  12  NR  4  NR  NR  NR  NR  NR  NR  9  7    Harbord and Manson, 198715  16  16  0  0  NR  9  1  6  NR  NR  NR  NR  NR  NR  11  4    Adams et al, 199016  44  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  29  15    Mizrahi et al, 199017  8  8  0  0  3  0  0  5  NR  NR  NR  NR  NR  NR  3  5    Hopkins and Klug, 199118  11  10  0  1  1  5  1  4  2  NR  2  NR  NR  NR  8  3    Duchowny et al, 199219  16  16  0  0  1  4  1  10  0  NR  NR  2  NR  NR  11  5    Adelson et al, 199220  33  33  0  0  5  16  9  13  NR  NR  NR  NR  NR  6  23  10    Jay et al, 199321  20  NR  NR  NR  12  10  3  3  NR  NR  NR  NR  NR  NR  12  8    Goldstein et al, 199639  33  33  0  0  6  8  NR  23  NR  NR  NR  NR  NR  NR  15  18    Bizzi et al, 199740  14  14  0  0  2  3  2  12  0  0  1  0  NR  21.4  11  3    Blume et al, 199723  14  14  0  0  7  8  NR  5  NR  NR  NR  NR  NR  NR  13  1    Gilliam et al, 199722  18  NR  NR  NR  2  10  6  3  0  NR  NR  NR  NR  NR  13  5    Salanova et al, 199824  3  3  0  0  3  0  0  0  NR  NR  NR  NR  NR  NR  2  1    Szabo et al, 199825  14  14  0  0  4  7  2  1  NR  NR  NR  NR  NR  NR  13  1    Williams et al, 199826  9  9  0  0  5  1  0  3  NR  NR  NR  NR  NR  NR  8  1    Gashlan et al, 199941  39  NR  NR  NR  NR  11  NR  NR  NR  NR  NR  NR  NR  NR  26  13    Khajavi et al, 199942  23  23  0  0  1  23  0  NR  NR  NR  NR  NR  NR  NR  19  4    Munari et al, 199927  21  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  2.1  21  0    Iannelli et al, 200028  32  0  0  32  0  32  0  0  NR  NR  NR  NR  NR  NR  30  2    Robinson et al, 200029  21  0  22  0  21  NR  NR  NR  2  0  1  1  NR  13.6  15  6    Paolicchi et al, 200030  29  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  19  10    Mohamed et al, 200131  34  34  0  0  15  NR  8  NR  NR  NR  NR  NR  NR  NR  26  7    Sotero de Menezes et al, 200143  15  11  11  4  10  4  1  1  1  NR  NR  NR  3  NR  7  8    Sinclair et al, 200344  42  42  0  0  13  17  4  12  NR  NR  NR  NR  NR  4  33  9    Cataltepe et al, 200545  29  23  12  6  2  29  0  0  0  0  4  1  2  17.2  24  5    Freitag et al, 200546  16  NR  NR  NR  1  13  2  0  NR  NR  NR  NR  NR  NR  16  0    Korkman et al, 200547  23  NR  NR  NR  NR  9  1  16  NR  NR  NR  NR  NR  NR  21  2    McLellan et al, 200548  60  NR  NR  NR  33  23  6  6  NR  NR  NR  NR  NR  NR  37  20    Mittal et al, 200533  109  77  20  12  49  38  38  11  0  2  1  0  23  5.5  94  15    Terra-Bustamante et al, 200549  35  34  1  0  19  7  14  2  0  NR  1  NR  2  NR  31  4    Benifla et al, 200650  126  45  75  6  16  64  12  34  1  NR  18  4  13  5  80  26    Larysz et al, 200751  1  1  0  0  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  1  0    Liu et al, 200752  9  9  0  0  9  0  0  0  NR  NR  NR  NR  NR  NR  8  1    Maton et al, 200835  20  NR  NR  NR  1  8  8  3  2  0  NR  1  2  15  16  4    Kim et al, 200835  59  47  1  11  16  32  33  2  5  1  13  7  4  6.7  53  6    Kan et al, 200836  33  NR  NR  NR  19  NR  NR  NR  0  0  NR  NR  NR  5  28  5    de Koning et al, 200953  24  24  0  0  7  13  2  4  NR  NR  NR  NR  NR  NR  23  1    Lee et al, 200954  15  10  0  5  3  15  13  0  NR  NR  NR  NR  NR  NR  15  0    Hemb et al, (includes  58  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  9  46  12    Mathern et al, 1999), 201055                                    Lee et al, 201037  19  5  14  0  11  5  9  NR  0  NR  11  NR  12  15.7  17  2    Lopez et al, 201056  52  11  31  3  20  14  26  16  NR  NR  NR  NR  NR  NR  49  3    Ogiwara et al, 201057  18  0  1  18  0  18  NR  NR  NR  NR  NR  NR  NR  NR  18  0    Zupanc et al, 201058  19  19  0  0  10  NR  NR  NR  NR  NR  NR  NR  NR  NR  18  1    Cersosimo et al, 201159  38  32  6  0  38  0  0  NR  NR  NR  NR  NR  NR  NR  38  0    Dagar et al, 201160  43  NR  24  NR  26  NR  NR  NR  NR  NR  NR  NR  NR  NR  35  8    Garcia-Fernandez et al, 201161  13  2  0  11  0  13  2  0  NR  NR  NR  NR  3  NR  13  0    Jayalakshmi et al, 201162  53  NR  NR  NR  30  NR  NR  NR  NR  NR  NR  NR  NR  NR  42  9    Lopez-Gonzalez et al, 201238  130  6  106  18  70  33  54  13  0  2  2  1  4  7  93  37    Skirrow et al, 201263  42  42  0  0  26  16  0  0  NR  NR  NR  NR  NR  NR  36  6    Uliel-Sibony et al, 201164  41  0  12  41  0  41  0  0  NR  NR  NR  NR  2  NR  34  7    Kasasbeh et al, 201265  25  10  15  0  8  0  0  13  NR  NR  NR  NR  NR  NR  19  6    Dwivedi et al, 201766  14  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  14  0    This series (includes Clusmann  183  58  52  73  60  80  18  25  3  3  39  9  9  9.8  155  28    et al, 20041), 2018                                    Total  2089  841  403  243  617  672  276  258  17  8  113  28  79    1629  433    Total percent    56.6  27.1  16.3  29.5  32.1  13.2  12.3  1.9  1.2  14.4  3.7  10.1  9.4  79.0  21.0        Surgery  Pathology  Complications        Publication  Patients  ATL  AH  Lx  MTS  Tumor  Dysplasia  Other  Permanent neuro deficit (excl. vision)  Hematoma  visual field deficit  Infection  Reoperation  Overall complication rate (%)  Engel I/II  Engel III/IV  Comments  Davidson and Falconer, 19752  40  40  0  0  24  12  0  8  NR  NR  NR  NR  NR  NR  31  9    Green and Pootrakul, 19824  32  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  26  6    Vaernet et al, 19835  33  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  20  13    Rasmussen, 19833  99  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  59  40    Meyer et al, 19866  50  50  0  0  NR  6  NR  NR  1  0  20  2  NR  8  39  11    Rutledge et al, 198713  3  0  0  2  0  3  0  0  NR  NR  NR  NR  NR  NR  3  0  third case biopsy only of AA  Drake et al, 198714  16  16  0  0  8  12  NR  4  NR  NR  NR  NR  NR  NR  9  7    Harbord and Manson, 198715  16  16  0  0  NR  9  1  6  NR  NR  NR  NR  NR  NR  11  4    Adams et al, 199016  44  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  29  15    Mizrahi et al, 199017  8  8  0  0  3  0  0  5  NR  NR  NR  NR  NR  NR  3  5    Hopkins and Klug, 199118  11  10  0  1  1  5  1  4  2  NR  2  NR  NR  NR  8  3    Duchowny et al, 199219  16  16  0  0  1  4  1  10  0  NR  NR  2  NR  NR  11  5    Adelson et al, 199220  33  33  0  0  5  16  9  13  NR  NR  NR  NR  NR  6  23  10    Jay et al, 199321  20  NR  NR  NR  12  10  3  3  NR  NR  NR  NR  NR  NR  12  8    Goldstein et al, 199639  33  33  0  0  6  8  NR  23  NR  NR  NR  NR  NR  NR  15  18    Bizzi et al, 199740  14  14  0  0  2  3  2  12  0  0  1  0  NR  21.4  11  3    Blume et al, 199723  14  14  0  0  7  8  NR  5  NR  NR  NR  NR  NR  NR  13  1    Gilliam et al, 199722  18  NR  NR  NR  2  10  6  3  0  NR  NR  NR  NR  NR  13  5    Salanova et al, 199824  3  3  0  0  3  0  0  0  NR  NR  NR  NR  NR  NR  2  1    Szabo et al, 199825  14  14  0  0  4  7  2  1  NR  NR  NR  NR  NR  NR  13  1    Williams et al, 199826  9  9  0  0  5  1  0  3  NR  NR  NR  NR  NR  NR  8  1    Gashlan et al, 199941  39  NR  NR  NR  NR  11  NR  NR  NR  NR  NR  NR  NR  NR  26  13    Khajavi et al, 199942  23  23  0  0  1  23  0  NR  NR  NR  NR  NR  NR  NR  19  4    Munari et al, 199927  21  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  2.1  21  0    Iannelli et al, 200028  32  0  0  32  0  32  0  0  NR  NR  NR  NR  NR  NR  30  2    Robinson et al, 200029  21  0  22  0  21  NR  NR  NR  2  0  1  1  NR  13.6  15  6    Paolicchi et al, 200030  29  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  19  10    Mohamed et al, 200131  34  34  0  0  15  NR  8  NR  NR  NR  NR  NR  NR  NR  26  7    Sotero de Menezes et al, 200143  15  11  11  4  10  4  1  1  1  NR  NR  NR  3  NR  7  8    Sinclair et al, 200344  42  42  0  0  13  17  4  12  NR  NR  NR  NR  NR  4  33  9    Cataltepe et al, 200545  29  23  12  6  2  29  0  0  0  0  4  1  2  17.2  24  5    Freitag et al, 200546  16  NR  NR  NR  1  13  2  0  NR  NR  NR  NR  NR  NR  16  0    Korkman et al, 200547  23  NR  NR  NR  NR  9  1  16  NR  NR  NR  NR  NR  NR  21  2    McLellan et al, 200548  60  NR  NR  NR  33  23  6  6  NR  NR  NR  NR  NR  NR  37  20    Mittal et al, 200533  109  77  20  12  49  38  38  11  0  2  1  0  23  5.5  94  15    Terra-Bustamante et al, 200549  35  34  1  0  19  7  14  2  0  NR  1  NR  2  NR  31  4    Benifla et al, 200650  126  45  75  6  16  64  12  34  1  NR  18  4  13  5  80  26    Larysz et al, 200751  1  1  0  0  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  1  0    Liu et al, 200752  9  9  0  0  9  0  0  0  NR  NR  NR  NR  NR  NR  8  1    Maton et al, 200835  20  NR  NR  NR  1  8  8  3  2  0  NR  1  2  15  16  4    Kim et al, 200835  59  47  1  11  16  32  33  2  5  1  13  7  4  6.7  53  6    Kan et al, 200836  33  NR  NR  NR  19  NR  NR  NR  0  0  NR  NR  NR  5  28  5    de Koning et al, 200953  24  24  0  0  7  13  2  4  NR  NR  NR  NR  NR  NR  23  1    Lee et al, 200954  15  10  0  5  3  15  13  0  NR  NR  NR  NR  NR  NR  15  0    Hemb et al, (includes  58  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  9  46  12    Mathern et al, 1999), 201055                                    Lee et al, 201037  19  5  14  0  11  5  9  NR  0  NR  11  NR  12  15.7  17  2    Lopez et al, 201056  52  11  31  3  20  14  26  16  NR  NR  NR  NR  NR  NR  49  3    Ogiwara et al, 201057  18  0  1  18  0  18  NR  NR  NR  NR  NR  NR  NR  NR  18  0    Zupanc et al, 201058  19  19  0  0  10  NR  NR  NR  NR  NR  NR  NR  NR  NR  18  1    Cersosimo et al, 201159  38  32  6  0  38  0  0  NR  NR  NR  NR  NR  NR  NR  38  0    Dagar et al, 201160  43  NR  24  NR  26  NR  NR  NR  NR  NR  NR  NR  NR  NR  35  8    Garcia-Fernandez et al, 201161  13  2  0  11  0  13  2  0  NR  NR  NR  NR  3  NR  13  0    Jayalakshmi et al, 201162  53  NR  NR  NR  30  NR  NR  NR  NR  NR  NR  NR  NR  NR  42  9    Lopez-Gonzalez et al, 201238  130  6  106  18  70  33  54  13  0  2  2  1  4  7  93  37    Skirrow et al, 201263  42  42  0  0  26  16  0  0  NR  NR  NR  NR  NR  NR  36  6    Uliel-Sibony et al, 201164  41  0  12  41  0  41  0  0  NR  NR  NR  NR  2  NR  34  7    Kasasbeh et al, 201265  25  10  15  0  8  0  0  13  NR  NR  NR  NR  NR  NR  19  6    Dwivedi et al, 201766  14  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  14  0    This series (includes Clusmann  183  58  52  73  60  80  18  25  3  3  39  9  9  9.8  155  28    et al, 20041), 2018                                    Total  2089  841  403  243  617  672  276  258  17  8  113  28  79    1629  433    Total percent    56.6  27.1  16.3  29.5  32.1  13.2  12.3  1.9  1.2  14.4  3.7  10.1  9.4  79.0  21.0    View Large METHODS This retrospective study was approved with a waiver of consent by an ethical standards committee on human experimentation at our university. One hundred ninety-seven consecutive pediatric patients (age ≤ 18) with TLE without extratemporal disease who underwent surgical treatment between 1988 and 2012 were retrospectively reviewed. Twelve patients had less than 12 mo follow-up, and 2 patients had only undergone biopsies for diagnosis. The remaining 183 patients were included for analysis. All patients had experienced well-documented, medically intractable TLE for more than 1 yr with failure of at least 2 first-line antiepileptic drugs prior to referral for preoperative evaluation. Demographic and clinical characteristics are presented in Table 2. TABLE 2. Patient Demographic Characteristics and History   Number  Percent  Male  88  48.1  Female  95  51.9  Age at operation  12.5 (mean)  13.6 (median)  Seizure onset  5.9 (mean)  5 (median)  With neoplasia  80  43.5  With AHS or dysplasia  77  42.1  History     Febrile seizures  30  19.7   Trauma  4  2.4   Infection  11  6.5   Asphyxia  2  1.2   Previous operation for tumor  8  4.7   Familial seizures  9  5.8   Neurological development      Normal  130  77.4    Intellectual disability  38  22.6   Seizure type      Auras  73  57.5    Simple partial  54  29.8    Complex partial  165  91.2    Generalized seizures  34  18.8    Other  4  2.2   Number of seizure types      1  110  60.8    2  60  33.1    3  11  6.1  Preop seizure freq (per mo)      ≤4  37  23.0    5-10  28  17.4    11-30  45  28.0    >30  51  31.7    Number  Percent  Male  88  48.1  Female  95  51.9  Age at operation  12.5 (mean)  13.6 (median)  Seizure onset  5.9 (mean)  5 (median)  With neoplasia  80  43.5  With AHS or dysplasia  77  42.1  History     Febrile seizures  30  19.7   Trauma  4  2.4   Infection  11  6.5   Asphyxia  2  1.2   Previous operation for tumor  8  4.7   Familial seizures  9  5.8   Neurological development      Normal  130  77.4    Intellectual disability  38  22.6   Seizure type      Auras  73  57.5    Simple partial  54  29.8    Complex partial  165  91.2    Generalized seizures  34  18.8    Other  4  2.2   Number of seizure types      1  110  60.8    2  60  33.1    3  11  6.1  Preop seizure freq (per mo)      ≤4  37  23.0    5-10  28  17.4    11-30  45  28.0    >30  51  31.7  preop = preoperative; mo = month; freq = frequency. View Large TABLE 2. Patient Demographic Characteristics and History   Number  Percent  Male  88  48.1  Female  95  51.9  Age at operation  12.5 (mean)  13.6 (median)  Seizure onset  5.9 (mean)  5 (median)  With neoplasia  80  43.5  With AHS or dysplasia  77  42.1  History     Febrile seizures  30  19.7   Trauma  4  2.4   Infection  11  6.5   Asphyxia  2  1.2   Previous operation for tumor  8  4.7   Familial seizures  9  5.8   Neurological development      Normal  130  77.4    Intellectual disability  38  22.6   Seizure type      Auras  73  57.5    Simple partial  54  29.8    Complex partial  165  91.2    Generalized seizures  34  18.8    Other  4  2.2   Number of seizure types      1  110  60.8    2  60  33.1    3  11  6.1  Preop seizure freq (per mo)      ≤4  37  23.0    5-10  28  17.4    11-30  45  28.0    >30  51  31.7    Number  Percent  Male  88  48.1  Female  95  51.9  Age at operation  12.5 (mean)  13.6 (median)  Seizure onset  5.9 (mean)  5 (median)  With neoplasia  80  43.5  With AHS or dysplasia  77  42.1  History     Febrile seizures  30  19.7   Trauma  4  2.4   Infection  11  6.5   Asphyxia  2  1.2   Previous operation for tumor  8  4.7   Familial seizures  9  5.8   Neurological development      Normal  130  77.4    Intellectual disability  38  22.6   Seizure type      Auras  73  57.5    Simple partial  54  29.8    Complex partial  165  91.2    Generalized seizures  34  18.8    Other  4  2.2   Number of seizure types      1  110  60.8    2  60  33.1    3  11  6.1  Preop seizure freq (per mo)      ≤4  37  23.0    5-10  28  17.4    11-30  45  28.0    >30  51  31.7  preop = preoperative; mo = month; freq = frequency. View Large Preoperative Evaluation Details of the protocol for preoperative evaluation and decision-making criteria have been previously published.69,70 Briefly, continuous scalp video-electroencephalogram (EEG) monitoring for assessment of focal ictal and interictal activity was standard for all patients. Invasive diagnostic studies were performed in 49 patients. The main reason for invasive monitoring was incongruence of video EEG and imaging findings, no lesion on imaging, or a suspected overlap of the ictal onset zone with eloquent cortex. Neuropsychological Evaluation Whenever possible, patients underwent a thorough neuropsychological examination as described in our previous report on pediatric TLE patients.1 In order to allow the evaluation across the above domains when different tools had been used, we used a 5 step rating of: 0, strongly impaired; 1, impaired; 2, borderline; 3, average; 4, above average.1,10 One step represents approximately 1 standard deviation and a change of 1 step over time represents a statistically reliable change.10 Neuropsychological impairment refers to this cognitive deficit noted on neuropsychological testing that may or may not be independent of “intellectual disability,” a “disorder with onset during the developmental period that includes both intellectual and adaptive functioning deficits in conceptual, social, and practical domains.”71 Surgical Procedures Prior to 1994, anterior temporal lobectomy (ATL) with removal of mesiotemporal structures was our standard procedure for mesial TLE, with resection extending to 4.0 to 5.0 cm from the temporal pole for nondominant lesions and 3.5 to 4.0 cm in the dominant hemisphere. Even in this era, patients with lateral lesions without clinical or electrophysiological mesiotemporal features underwent lateral lesionectomies without ATL. Temporodorsal and basal lesions underwent temporodorsal lesionectomy with the removal of hippocampus and amygdala in selected cases. Beginning in 1994, resections became more limited, and were often facilitated by the improved demonstration of epileptogenic lesions on MRI or their localization with invasive or noninvasive EEG recordings as previously described.1 Transsylvian amygdalohippocampectomy (AH) largely replaced ATL for treating mesial TLE, although ATL was continued in selected cases due to early results suggesting worse results, especially for left-sided lesions.1,72 Outcome Data Seizure outcome and neurological status were obtained at last follow-up. Patients were assigned to 1 of 4 outcome classes as described by Engel et al,7 based on the patient's last available postoperative seizure status. Class I and II were grouped as satisfactory seizure outcome and class III and IV were grouped as unsatisfactory seizure outcome. Statistical Analysis Factors were analyzed with respect to their effect on seizure outcome. For unifactorial analysis: Student's t-test was used for comparison of continuous variables if distribution was normal; Wilcoxon's test was used if it was not. χ2 test or Fisher's exact test were used for dichotomous discrete variables, with significance set at P < .05 (2-sided), and a trend toward significance set at P < .10. A multivariate logistic regression analysis with Engel class 1 outcome as a dependent variable was performed to investigate the following variables (side, invasive diagnostics, histology grouped as long-term epilepsy associated tumor vs other and type of surgery grouped as lesionectomy without hippocampectomy vs other). All statistical analyses were performed using commercially available software JMP (JMP®, Version 12. SAS Institute Inc, Cary, North Carolina). RESULTS Seizure Outcomes Mean follow-up was 42 mo (range 12-152 mo); 64 patients had follow-up between 1 and 2 yr, and 119 patients had greater than 2 yr of follow-up. One hundred fifty-five patients had good seizure outcomes (Engel I/II; 84.7%) and 28 patients had poor seizure outcomes (Engel III/IV; 15.3%; see Table 3). One hundred forty-four patients were Engel I (78.7%). Only 10 patients did not have worthwhile improvement (Engel class IV; 5.4%). In terms of durability of surgical outcomes, there were 64 patients with 1 to 2 yr of follow-up, 64 patients with greater than 2 to 4 yr of follow-up, and 55 patients with greater than 4 yr of follow-up. Of those patients with 1 to 2 yr of follow-up, 59 patients achieved satisfactory seizure outcomes (92.2%). Of patients with 2 to 4 yr of follow-up, 52 patients achieved satisfactory seizure outcomes (81.25%). Of patients with greater than 4 yr of follow-up, 44 achieved satisfactory seizure outcomes (80%). Most of the difference between cohorts appears to be in a decrease in Engel class II patients and an increase in class III and IV patients in later cohorts, although these changes were not significant (Figure, P = .1003). There is actually only a slight drop in Engel class I patients with greater follow-up with no statistical significance between groups (81.5% vs 78.1% vs 76.4% for 1-2, 2-4, and greater than 4 yr follow-up, respectively, P = .7770; Figure). FIGURE. View largeDownload slide Engel class by length of follow-up. Percentage of patients in each Engel class grouped by length of follow-up. FIGURE. View largeDownload slide Engel class by length of follow-up. Percentage of patients in each Engel class grouped by length of follow-up. TABLE 3. Patient Characteristics and Seizure Outcome     Percent  Engel class I/II  percent  Engel class III/IV  Percent  P value    All patients  184  100  155  84.7  28  15.3       Male  88  48.1  75  85.2  13  14.8  1.0000     Female  95  51.9  80  84.2  15  15.8      Clinical findings     Febrile seizures  30  19.7  27  90  3  10  0.7678     No febrile seizures  122  80.3  104  85.2  18  14.8       Generalized seizures  34  18.8  26  76.5  8  23.5  0.1780     Never generalize  147  81.2  128  87.1  19  12.9       No aura  54  42.5  46  85.2  8  14.8  1.0000     Auras  73  57.5  62  84.9  11  15.1       Retardation  38  22.6  28  73.7  10  26.3  0.0364     No retardation  130  77.4  115  88.5  15  11.5      MRI findings     No structural abnormality  8  4.5  8  100  0  0  0.6064     Nonspecific lesion  22  12.4  16  72.7  6  27.3  0.2191     Neoplasia                combined Fisher exact   Total  68  38.2  61  89.7  7  10.3  0.4127  0.0150   Gangliogliioma or DNET  43  24.2  38  88.4  5  11.6  0.6378     Other tumor  25  14.0  23  92  2  8  0.5430     MTS  54  30.3  48  88.9  6  11.1  0.5143     Dysplasia  18  10.1  11  61.1  7  38.9  0.0202     Other (specific lesion)  8  4.5  7  87.5  1  12.5  1.0000     MRI sensitivity and specificity     Correct and precise prediction  134  75.2  116  86.6  18  13.4  0.3316     Incorrect or imprecise prediction  44  24.7  35  79.5  9  20.5      Histologic diagnosis     Gangliogliioma or DNET  65  35.3  56  86.2  9  13.8  0.8423  0.0422   Other tumor  16  10.6  16  100  0  0  0.1346     MTS  59  32.2  52  88.1  7  11.9  0.6709     Dysplasia  19  11.5  15  78.9  4  21.1  0.5117     Other  24  9.0  16  66.7  8  33.3  0.0421     Intraoperative navigation  23  29.1  19  82.6  4  17.4  1.0000     No navigation  56  70.9  46  82.1  10  17.9       Invasive diagnostic study  49  28.2  38  77.6  11  22.4  0.0990     No invasive diagnostic study  125  71.8  110  88  15  12       New immediate postoperative deficit  33  19.0  26  78.8  7  21.2  0.4297     No new immediate postop deficit  141  81.0  120  85.1  21  14.9       Number of seizure types              0.4201      1  110  61.1  92  83.6  18  16.4        2  59  32.8  53  89.9  6  10.1        3  11  6.1  8  72.7  3  27.3       Preop seizure frequency (per mo)              0.7642      <4  37  22.8  31  83.8  6  16.2        5-10  28  17.3  24  85.7  4  14.3        11-30  45  27.8  39  86.7  6  13.3        >30  51  32.1  42  82.4  9  17.6        Age ≥ 12  104  56.8  90  86.5  14  13.5  0.5347      Age < 12  79  43.2  65  82.3  14  17.7          Percent  Engel class I/II  percent  Engel class III/IV  Percent  P value    All patients  184  100  155  84.7  28  15.3       Male  88  48.1  75  85.2  13  14.8  1.0000     Female  95  51.9  80  84.2  15  15.8      Clinical findings     Febrile seizures  30  19.7  27  90  3  10  0.7678     No febrile seizures  122  80.3  104  85.2  18  14.8       Generalized seizures  34  18.8  26  76.5  8  23.5  0.1780     Never generalize  147  81.2  128  87.1  19  12.9       No aura  54  42.5  46  85.2  8  14.8  1.0000     Auras  73  57.5  62  84.9  11  15.1       Retardation  38  22.6  28  73.7  10  26.3  0.0364     No retardation  130  77.4  115  88.5  15  11.5      MRI findings     No structural abnormality  8  4.5  8  100  0  0  0.6064     Nonspecific lesion  22  12.4  16  72.7  6  27.3  0.2191     Neoplasia                combined Fisher exact   Total  68  38.2  61  89.7  7  10.3  0.4127  0.0150   Gangliogliioma or DNET  43  24.2  38  88.4  5  11.6  0.6378     Other tumor  25  14.0  23  92  2  8  0.5430     MTS  54  30.3  48  88.9  6  11.1  0.5143     Dysplasia  18  10.1  11  61.1  7  38.9  0.0202     Other (specific lesion)  8  4.5  7  87.5  1  12.5  1.0000     MRI sensitivity and specificity     Correct and precise prediction  134  75.2  116  86.6  18  13.4  0.3316     Incorrect or imprecise prediction  44  24.7  35  79.5  9  20.5      Histologic diagnosis     Gangliogliioma or DNET  65  35.3  56  86.2  9  13.8  0.8423  0.0422   Other tumor  16  10.6  16  100  0  0  0.1346     MTS  59  32.2  52  88.1  7  11.9  0.6709     Dysplasia  19  11.5  15  78.9  4  21.1  0.5117     Other  24  9.0  16  66.7  8  33.3  0.0421     Intraoperative navigation  23  29.1  19  82.6  4  17.4  1.0000     No navigation  56  70.9  46  82.1  10  17.9       Invasive diagnostic study  49  28.2  38  77.6  11  22.4  0.0990     No invasive diagnostic study  125  71.8  110  88  15  12       New immediate postoperative deficit  33  19.0  26  78.8  7  21.2  0.4297     No new immediate postop deficit  141  81.0  120  85.1  21  14.9       Number of seizure types              0.4201      1  110  61.1  92  83.6  18  16.4        2  59  32.8  53  89.9  6  10.1        3  11  6.1  8  72.7  3  27.3       Preop seizure frequency (per mo)              0.7642      <4  37  22.8  31  83.8  6  16.2        5-10  28  17.3  24  85.7  4  14.3        11-30  45  27.8  39  86.7  6  13.3        >30  51  32.1  42  82.4  9  17.6        Age ≥ 12  104  56.8  90  86.5  14  13.5  0.5347      Age < 12  79  43.2  65  82.3  14  17.7      DNET = dysembryoplastic neuroepithelial tumor; MTS = mesial temporal sclerosis; preop = preoperative; postop = postoperative; mo = month. View Large TABLE 3. Patient Characteristics and Seizure Outcome     Percent  Engel class I/II  percent  Engel class III/IV  Percent  P value    All patients  184  100  155  84.7  28  15.3       Male  88  48.1  75  85.2  13  14.8  1.0000     Female  95  51.9  80  84.2  15  15.8      Clinical findings     Febrile seizures  30  19.7  27  90  3  10  0.7678     No febrile seizures  122  80.3  104  85.2  18  14.8       Generalized seizures  34  18.8  26  76.5  8  23.5  0.1780     Never generalize  147  81.2  128  87.1  19  12.9       No aura  54  42.5  46  85.2  8  14.8  1.0000     Auras  73  57.5  62  84.9  11  15.1       Retardation  38  22.6  28  73.7  10  26.3  0.0364     No retardation  130  77.4  115  88.5  15  11.5      MRI findings     No structural abnormality  8  4.5  8  100  0  0  0.6064     Nonspecific lesion  22  12.4  16  72.7  6  27.3  0.2191     Neoplasia                combined Fisher exact   Total  68  38.2  61  89.7  7  10.3  0.4127  0.0150   Gangliogliioma or DNET  43  24.2  38  88.4  5  11.6  0.6378     Other tumor  25  14.0  23  92  2  8  0.5430     MTS  54  30.3  48  88.9  6  11.1  0.5143     Dysplasia  18  10.1  11  61.1  7  38.9  0.0202     Other (specific lesion)  8  4.5  7  87.5  1  12.5  1.0000     MRI sensitivity and specificity     Correct and precise prediction  134  75.2  116  86.6  18  13.4  0.3316     Incorrect or imprecise prediction  44  24.7  35  79.5  9  20.5      Histologic diagnosis     Gangliogliioma or DNET  65  35.3  56  86.2  9  13.8  0.8423  0.0422   Other tumor  16  10.6  16  100  0  0  0.1346     MTS  59  32.2  52  88.1  7  11.9  0.6709     Dysplasia  19  11.5  15  78.9  4  21.1  0.5117     Other  24  9.0  16  66.7  8  33.3  0.0421     Intraoperative navigation  23  29.1  19  82.6  4  17.4  1.0000     No navigation  56  70.9  46  82.1  10  17.9       Invasive diagnostic study  49  28.2  38  77.6  11  22.4  0.0990     No invasive diagnostic study  125  71.8  110  88  15  12       New immediate postoperative deficit  33  19.0  26  78.8  7  21.2  0.4297     No new immediate postop deficit  141  81.0  120  85.1  21  14.9       Number of seizure types              0.4201      1  110  61.1  92  83.6  18  16.4        2  59  32.8  53  89.9  6  10.1        3  11  6.1  8  72.7  3  27.3       Preop seizure frequency (per mo)              0.7642      <4  37  22.8  31  83.8  6  16.2        5-10  28  17.3  24  85.7  4  14.3        11-30  45  27.8  39  86.7  6  13.3        >30  51  32.1  42  82.4  9  17.6        Age ≥ 12  104  56.8  90  86.5  14  13.5  0.5347      Age < 12  79  43.2  65  82.3  14  17.7          Percent  Engel class I/II  percent  Engel class III/IV  Percent  P value    All patients  184  100  155  84.7  28  15.3       Male  88  48.1  75  85.2  13  14.8  1.0000     Female  95  51.9  80  84.2  15  15.8      Clinical findings     Febrile seizures  30  19.7  27  90  3  10  0.7678     No febrile seizures  122  80.3  104  85.2  18  14.8       Generalized seizures  34  18.8  26  76.5  8  23.5  0.1780     Never generalize  147  81.2  128  87.1  19  12.9       No aura  54  42.5  46  85.2  8  14.8  1.0000     Auras  73  57.5  62  84.9  11  15.1       Retardation  38  22.6  28  73.7  10  26.3  0.0364     No retardation  130  77.4  115  88.5  15  11.5      MRI findings     No structural abnormality  8  4.5  8  100  0  0  0.6064     Nonspecific lesion  22  12.4  16  72.7  6  27.3  0.2191     Neoplasia                combined Fisher exact   Total  68  38.2  61  89.7  7  10.3  0.4127  0.0150   Gangliogliioma or DNET  43  24.2  38  88.4  5  11.6  0.6378     Other tumor  25  14.0  23  92  2  8  0.5430     MTS  54  30.3  48  88.9  6  11.1  0.5143     Dysplasia  18  10.1  11  61.1  7  38.9  0.0202     Other (specific lesion)  8  4.5  7  87.5  1  12.5  1.0000     MRI sensitivity and specificity     Correct and precise prediction  134  75.2  116  86.6  18  13.4  0.3316     Incorrect or imprecise prediction  44  24.7  35  79.5  9  20.5      Histologic diagnosis     Gangliogliioma or DNET  65  35.3  56  86.2  9  13.8  0.8423  0.0422   Other tumor  16  10.6  16  100  0  0  0.1346     MTS  59  32.2  52  88.1  7  11.9  0.6709     Dysplasia  19  11.5  15  78.9  4  21.1  0.5117     Other  24  9.0  16  66.7  8  33.3  0.0421     Intraoperative navigation  23  29.1  19  82.6  4  17.4  1.0000     No navigation  56  70.9  46  82.1  10  17.9       Invasive diagnostic study  49  28.2  38  77.6  11  22.4  0.0990     No invasive diagnostic study  125  71.8  110  88  15  12       New immediate postoperative deficit  33  19.0  26  78.8  7  21.2  0.4297     No new immediate postop deficit  141  81.0  120  85.1  21  14.9       Number of seizure types              0.4201      1  110  61.1  92  83.6  18  16.4        2  59  32.8  53  89.9  6  10.1        3  11  6.1  8  72.7  3  27.3       Preop seizure frequency (per mo)              0.7642      <4  37  22.8  31  83.8  6  16.2        5-10  28  17.3  24  85.7  4  14.3        11-30  45  27.8  39  86.7  6  13.3        >30  51  32.1  42  82.4  9  17.6        Age ≥ 12  104  56.8  90  86.5  14  13.5  0.5347      Age < 12  79  43.2  65  82.3  14  17.7      DNET = dysembryoplastic neuroepithelial tumor; MTS = mesial temporal sclerosis; preop = preoperative; postop = postoperative; mo = month. View Large Clinical and Demographic Findings (Including Seizure Types and Frequency) Clinical and demographic data are summarized in Table 2. Seizure onset occurred significantly earlier in patients with dysplasia (P = .0199), and trended toward significance with mesial temporal sclerosis (MTS) (P = .0782) in comparison to patients with tumor/other diagnoses. This translates to 43.75% of dysplasia patients having seizure onset in the first year of life vs 28.57% of MTS patients, but only 16.67% of tumors/other. There was a history of febrile seizures more commonly with MTS (38.46%) than in patients with neoplasias (11.43%; P = .0312). No patient with dysplasia had a history of febrile seizures. Intellectual disability occurred in more patients with MTS (25.92%, P = .0252) or dysplasia (44.44%, P = .0024) than in patients with neoplasia (10.81%) and predisposed to a worse seizure outcome (73.68% vs 88.46%, P = .0364). The need for invasive diagnostic testing trended toward a lower chance of seizure freedom (77.6% vs 88%, P = .0990). Also, transient postoperative deficit did not correlate to seizure freedom (78.8% vs 85.1%, P = .4297). In terms of preoperative seizure status, none of the tested parameters were significant (seizure type, number of seizure types, or preoperative seizure frequency). Age at surgery also did not affect outcomes (86.5% vs 82.3% for patients under 12 achieving good outcomes, P = .5347). Additionally, age at epilepsy onset (P = .5) and duration of epilepsy (.44) were not associated with seizure outcome. Additional preoperative factors are discussed in Table 3. Imaging Findings Imaging findings are often used to guide therapy, especially when lesional findings correlate well with seizure localization on EEG. Structural abnormalities were found in 171 patients (95.56%) with no abnormalities detected in 8 patients (Table 3). These 8 patients were previously reported on, and all became seizure free.1 Correct MRI prediction did not differ from incorrect prediction regarding satisfactory seizure outcome (Table 3). Histopathological Findings One hundred eighty-two of 183 patients had a histopathological diagnosis (99.5%); 1 remained unclear but abnormal. Of the 182 lesions with a diagnosis, 96 were non-neoplastic (52.7%), 80 were neoplastic (43.5%), and 6 were normal (3.3%). There were 59 patients with MTS, the most frequent diagnosis. Additionally, among the non-neoplastic lesions, there were 19 patients with cortical dysplasia, 7 with gliosis, 3 heterotopias, and a few miscellaneous lesions. Among the neoplasms, there were 55 gangliogliomas, 10 dysembryoplastic neuroepithelial tumor, and 15 other neoplasms (3 World Health Organization [WHO] grade I astrocytomas, 5 WHO grade II astrocytomas, 4 WHO grade II oligodendrogliomas, and 3 WHO grade II pleomorphic xanthoastrocytomas). Histologic diagnosis was associated with satisfactory seizure outcomes excepting for other/normal, where only 66.7% had a satisfactory outcome (16 of 24, P = .0421; for additional, see Table 3). Significance for all histology was lost with multivariate analysis. Neuropsychological Findings Data from standardized neuropsychological assessments were available for 137 of the 183 patients (74.9%); however, 12 of these patients did not have all required pre- and postoperative data. The range of sample sizes for the different cognitive domains was n = 110 to 120. This study sample also contains some patients whose cognitive outcome has been previously reported.1 Only 2 children showed right-hemisphere language dominance in the Wada test; hence, outcomes were compared between left vs right TLE patients. Pre- and postsurgical cognitive performance and results from statistical testing are shown in Table 4. Regarding presurgical data, impaired performance (ie, clinical rating score < 2) was evident in 15% to 41% of the patients, depending on domain, with no effect of side of pathology/surgery; only a non-significant effect of higher frequency of impairment in L-TLE vs R-TLE patients was found for language. After surgery, we found no systematic cognitive decline on the group level. However, lateralization effects were found postsurgically with more L-TLE than R-TLE patients showing verbal memory impairment and more R-TLE than L-TLE patients showing impaired visuospatial abilities. For verbal memory, the rate of individual change was highest with about one-third of the patients showing decline and another third showing improvement. Lateralization effects were as follows: more R-TLE (46%) than L-TLE (22%) patients improved in verbal memory, and more L-TLE (29%) than R-TLE (14%) patients improved in visual memory. An effect of side of surgery on cognitive declines or loss of function was not found for any domain. TABLE 4. Pre- and Postsurgical Impairment and Performance Change by Side of Surgery   Presurgical impairment  Postsurgical impairment  Decline  Improvement    L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  Verbal memory  40%  42%  41%  .786  50%  30%  41%  .022  29%  25%  27%  .544  22%  46%  33%  .005  Visual memory  21%  21%  21%  .949  18%  26%  22%  .241  22%  26%  24%  .579  29%  14%  22%  .040  Language  41%  26%  34%  .082  38%  26%  33%  .157  13%  9%  11%  .431  29%  21%  26%  .286  Attention  25%  19%  22%  .446  12%  16%  14%  .513  7%  9%  8%  .771  25%  23%  24%  .775  Visuospatial abilities  16%  14%  15%  .740  6%  18%  11%  .039  9%  9%  9%  .992  32%  32%  32%  .926    Presurgical impairment  Postsurgical impairment  Decline  Improvement    L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  Verbal memory  40%  42%  41%  .786  50%  30%  41%  .022  29%  25%  27%  .544  22%  46%  33%  .005  Visual memory  21%  21%  21%  .949  18%  26%  22%  .241  22%  26%  24%  .579  29%  14%  22%  .040  Language  41%  26%  34%  .082  38%  26%  33%  .157  13%  9%  11%  .431  29%  21%  26%  .286  Attention  25%  19%  22%  .446  12%  16%  14%  .513  7%  9%  8%  .771  25%  23%  24%  .775  Visuospatial abilities  16%  14%  15%  .740  6%  18%  11%  .039  9%  9%  9%  .992  32%  32%  32%  .926  aL-TLE vs R-TLE, χ2 tests. P-values < .05 and respective data are set in bold. L-/R-TLE, left/right temporal lobe epilepsy. Impairment: clinical rating scores < 2; decline/improvement: presurgical>/<postsurgical clinical rating score. View Large TABLE 4. Pre- and Postsurgical Impairment and Performance Change by Side of Surgery   Presurgical impairment  Postsurgical impairment  Decline  Improvement    L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  Verbal memory  40%  42%  41%  .786  50%  30%  41%  .022  29%  25%  27%  .544  22%  46%  33%  .005  Visual memory  21%  21%  21%  .949  18%  26%  22%  .241  22%  26%  24%  .579  29%  14%  22%  .040  Language  41%  26%  34%  .082  38%  26%  33%  .157  13%  9%  11%  .431  29%  21%  26%  .286  Attention  25%  19%  22%  .446  12%  16%  14%  .513  7%  9%  8%  .771  25%  23%  24%  .775  Visuospatial abilities  16%  14%  15%  .740  6%  18%  11%  .039  9%  9%  9%  .992  32%  32%  32%  .926    Presurgical impairment  Postsurgical impairment  Decline  Improvement    L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  Verbal memory  40%  42%  41%  .786  50%  30%  41%  .022  29%  25%  27%  .544  22%  46%  33%  .005  Visual memory  21%  21%  21%  .949  18%  26%  22%  .241  22%  26%  24%  .579  29%  14%  22%  .040  Language  41%  26%  34%  .082  38%  26%  33%  .157  13%  9%  11%  .431  29%  21%  26%  .286  Attention  25%  19%  22%  .446  12%  16%  14%  .513  7%  9%  8%  .771  25%  23%  24%  .775  Visuospatial abilities  16%  14%  15%  .740  6%  18%  11%  .039  9%  9%  9%  .992  32%  32%  32%  .926  aL-TLE vs R-TLE, χ2 tests. P-values < .05 and respective data are set in bold. L-/R-TLE, left/right temporal lobe epilepsy. Impairment: clinical rating scores < 2; decline/improvement: presurgical>/<postsurgical clinical rating score. View Large Surgical Outcomes and Complications There are 3 distinct periods in this case series. During the first period, between 1989 and 1993, when 36 operations were performed, many more ATLs were performed, with 28 surgeries being ATL (77.8%), 4 being lesionectomies with hippocampectomies (11.1%) and 4 purely lateral neocortical resections (11.1%). From 1994 to 2000, AH largely replaced ATL for cases of presumed pure mesial TLE, with only 7 ATL (10.9%), 29 AH (45.3%), 12 lesionectomies with hippocampectomies (18.75%), and 16 purely lateral neocortical resections (25%) for a total of 64 procedures. Following publication of our initial series of pediatric TLE, where AH resulted in a lower rate of seizure relief compared with standard ATL, especially with left-sided operations, our practice patterns changed again.1 From 2001 to 2012, we performed 23 ATL (27.7%), 15 AH (18.1%), 14 lesionectomies with hippocampectomies (16.9%), and 31 pure lateral neocortical resections (37.3%). This improved AH outcomes, but resulted in worsening ATL outcomes, with no change in overall outcomes. There were no significant differences in satisfactory seizure outcomes between cohorts. Overall in this series, 155 patients had a satisfactory outcome (84.7%) and only 28 patients had an unsatisfactory outcome (15.3%). ATL resulted in 82.8% satisfactory seizure outcomes (79.3% Engel I), AH with 78.8% (67.3% Engel I), lateral lesionectomy with AH with 81.8% (77.3% Engel I), and lateral lesionectomies with 94.1% (90.2% Engel I). Univariate analysis revealed that lesionectomy alone was significantly better than any other resection type (P = .0374). Multivariate analysis was then performed, confirming lesionectomy as the only independent predictor of better seizure outcome (P = .0147). Additional details are listed in Table 5. TABLE 5. Surgery, Histopathologic Diagnosis and Seizure Outcome   Number  Engel I/II (I)  Engel III/IV  P value  P value    All procedures  183  155 (144)  28         Percent    84.7 (78.7)  15.3        R  92  81 (67)  11    .2244     Percent    88.0 (72.8)  12.0        L  91  74 (66)  17         Percent    81.3 (72.5)  18.7        ATL  58  48 (46)  10    .6850     Percent    82.8 (79.3)  17.2        R ATL  31  27 (26)  4  R vs L       Percent    87.1 (83.9)  12.9  .4895      L ATL  27  21 (20)  6         Percent    77.8 (74.1)  22.2  ATL/path      ATL with MTS  17  15 (14)  2  .5902       Percent    88.2 (82.4)  11.8        ATL with tumor  18  16 (16)  2         Percent    88.9 (88.9)  11.1        ATL with dysplasia  10  8 (8)  2         Percent    80 (80)  20        ATL normal/other  13  9 (8)  4         Percent    69.2 (61.5)  30.8        AH  52  41 (35)  11    .3975     Percent    78.8 (67.3)  21.2  R vs L      R AH  25  21 (19)  4  .5029       Percent    84.0 (76.0)  16.0        L AH  27  20 (16)  7         Percent    74.1 (59.3)  25.9        AH with MTS  35  30 (25)  5  AH/path       Percent    85.7 (71.4)  14.3  .0055      AH with tumor  14  11 (10)  3         Percent    78.6 (71.4)  21.4        AH with dysplasia/normal  3  0 (0)  3         Percent    0.0 (0.0)  100.0        Lat Lx with AH  22  18 (17)  4    .751     Percent    81.8 (77.3)  18.2  R vs L      R Lx + AH  10  8 (8)  2  1       Percent    80.0 (80.0)  20.0        L Lx + AH  12  10 (9)  2  Lx + HC/path       Percent    83.3 (75.0)  16.7  .3042      Lx + AH with MTS  2  2 (2)  0         Percent    100.0 (100.0)  0.0        Lx + AH with tumor  14  11 (10)  3         Percent    78.6 (71.4)  21.4        Lx + AH dysplasia/other  6  5 (5)  1         Percent    83.3 (83.3)  16.7        Lat Lx without AH  51  48 (46)  3    .0374  positive   Percent    94.1 (90.2)  5.9  R vs L      R Lx without AH  26  25 (25)  1  .6098       Percent    96.2 (96.2)  3.8        L Lx without AH  25  23 (21)  2         Percent    92.0 (84.0)  8.0  Lx no HC      Lx without AH tumor  34  33 (32)  1  .2068       Percent    97.1 (94.1)  2.9        Lx without AH other  17  15 (14)  2         Percent    88.2 (82.4)  11.8        Totals  184  156 (145)  28         Percent    84.8 (78.8)  15.2          Number  Engel I/II (I)  Engel III/IV  P value  P value    All procedures  183  155 (144)  28         Percent    84.7 (78.7)  15.3        R  92  81 (67)  11    .2244     Percent    88.0 (72.8)  12.0        L  91  74 (66)  17         Percent    81.3 (72.5)  18.7        ATL  58  48 (46)  10    .6850     Percent    82.8 (79.3)  17.2        R ATL  31  27 (26)  4  R vs L       Percent    87.1 (83.9)  12.9  .4895      L ATL  27  21 (20)  6         Percent    77.8 (74.1)  22.2  ATL/path      ATL with MTS  17  15 (14)  2  .5902       Percent    88.2 (82.4)  11.8        ATL with tumor  18  16 (16)  2         Percent    88.9 (88.9)  11.1        ATL with dysplasia  10  8 (8)  2         Percent    80 (80)  20        ATL normal/other  13  9 (8)  4         Percent    69.2 (61.5)  30.8        AH  52  41 (35)  11    .3975     Percent    78.8 (67.3)  21.2  R vs L      R AH  25  21 (19)  4  .5029       Percent    84.0 (76.0)  16.0        L AH  27  20 (16)  7         Percent    74.1 (59.3)  25.9        AH with MTS  35  30 (25)  5  AH/path       Percent    85.7 (71.4)  14.3  .0055      AH with tumor  14  11 (10)  3         Percent    78.6 (71.4)  21.4        AH with dysplasia/normal  3  0 (0)  3         Percent    0.0 (0.0)  100.0        Lat Lx with AH  22  18 (17)  4    .751     Percent    81.8 (77.3)  18.2  R vs L      R Lx + AH  10  8 (8)  2  1       Percent    80.0 (80.0)  20.0        L Lx + AH  12  10 (9)  2  Lx + HC/path       Percent    83.3 (75.0)  16.7  .3042      Lx + AH with MTS  2  2 (2)  0         Percent    100.0 (100.0)  0.0        Lx + AH with tumor  14  11 (10)  3         Percent    78.6 (71.4)  21.4        Lx + AH dysplasia/other  6  5 (5)  1         Percent    83.3 (83.3)  16.7        Lat Lx without AH  51  48 (46)  3    .0374  positive   Percent    94.1 (90.2)  5.9  R vs L      R Lx without AH  26  25 (25)  1  .6098       Percent    96.2 (96.2)  3.8        L Lx without AH  25  23 (21)  2         Percent    92.0 (84.0)  8.0  Lx no HC      Lx without AH tumor  34  33 (32)  1  .2068       Percent    97.1 (94.1)  2.9        Lx without AH other  17  15 (14)  2         Percent    88.2 (82.4)  11.8        Totals  184  156 (145)  28         Percent    84.8 (78.8)  15.2        L = left; R = right; ATL = anterior temporal lobectomy; MTS = mesial temporal sclerosis; AH = amygdalohippocampectomy; Lx = lesionectomy; lat = lateral. View Large TABLE 5. Surgery, Histopathologic Diagnosis and Seizure Outcome   Number  Engel I/II (I)  Engel III/IV  P value  P value    All procedures  183  155 (144)  28         Percent    84.7 (78.7)  15.3        R  92  81 (67)  11    .2244     Percent    88.0 (72.8)  12.0        L  91  74 (66)  17         Percent    81.3 (72.5)  18.7        ATL  58  48 (46)  10    .6850     Percent    82.8 (79.3)  17.2        R ATL  31  27 (26)  4  R vs L       Percent    87.1 (83.9)  12.9  .4895      L ATL  27  21 (20)  6         Percent    77.8 (74.1)  22.2  ATL/path      ATL with MTS  17  15 (14)  2  .5902       Percent    88.2 (82.4)  11.8        ATL with tumor  18  16 (16)  2         Percent    88.9 (88.9)  11.1        ATL with dysplasia  10  8 (8)  2         Percent    80 (80)  20        ATL normal/other  13  9 (8)  4         Percent    69.2 (61.5)  30.8        AH  52  41 (35)  11    .3975     Percent    78.8 (67.3)  21.2  R vs L      R AH  25  21 (19)  4  .5029       Percent    84.0 (76.0)  16.0        L AH  27  20 (16)  7         Percent    74.1 (59.3)  25.9        AH with MTS  35  30 (25)  5  AH/path       Percent    85.7 (71.4)  14.3  .0055      AH with tumor  14  11 (10)  3         Percent    78.6 (71.4)  21.4        AH with dysplasia/normal  3  0 (0)  3         Percent    0.0 (0.0)  100.0        Lat Lx with AH  22  18 (17)  4    .751     Percent    81.8 (77.3)  18.2  R vs L      R Lx + AH  10  8 (8)  2  1       Percent    80.0 (80.0)  20.0        L Lx + AH  12  10 (9)  2  Lx + HC/path       Percent    83.3 (75.0)  16.7  .3042      Lx + AH with MTS  2  2 (2)  0         Percent    100.0 (100.0)  0.0        Lx + AH with tumor  14  11 (10)  3         Percent    78.6 (71.4)  21.4        Lx + AH dysplasia/other  6  5 (5)  1         Percent    83.3 (83.3)  16.7        Lat Lx without AH  51  48 (46)  3    .0374  positive   Percent    94.1 (90.2)  5.9  R vs L      R Lx without AH  26  25 (25)  1  .6098       Percent    96.2 (96.2)  3.8        L Lx without AH  25  23 (21)  2         Percent    92.0 (84.0)  8.0  Lx no HC      Lx without AH tumor  34  33 (32)  1  .2068       Percent    97.1 (94.1)  2.9        Lx without AH other  17  15 (14)  2         Percent    88.2 (82.4)  11.8        Totals  184  156 (145)  28         Percent    84.8 (78.8)  15.2          Number  Engel I/II (I)  Engel III/IV  P value  P value    All procedures  183  155 (144)  28         Percent    84.7 (78.7)  15.3        R  92  81 (67)  11    .2244     Percent    88.0 (72.8)  12.0        L  91  74 (66)  17         Percent    81.3 (72.5)  18.7        ATL  58  48 (46)  10    .6850     Percent    82.8 (79.3)  17.2        R ATL  31  27 (26)  4  R vs L       Percent    87.1 (83.9)  12.9  .4895      L ATL  27  21 (20)  6         Percent    77.8 (74.1)  22.2  ATL/path      ATL with MTS  17  15 (14)  2  .5902       Percent    88.2 (82.4)  11.8        ATL with tumor  18  16 (16)  2         Percent    88.9 (88.9)  11.1        ATL with dysplasia  10  8 (8)  2         Percent    80 (80)  20        ATL normal/other  13  9 (8)  4         Percent    69.2 (61.5)  30.8        AH  52  41 (35)  11    .3975     Percent    78.8 (67.3)  21.2  R vs L      R AH  25  21 (19)  4  .5029       Percent    84.0 (76.0)  16.0        L AH  27  20 (16)  7         Percent    74.1 (59.3)  25.9        AH with MTS  35  30 (25)  5  AH/path       Percent    85.7 (71.4)  14.3  .0055      AH with tumor  14  11 (10)  3         Percent    78.6 (71.4)  21.4        AH with dysplasia/normal  3  0 (0)  3         Percent    0.0 (0.0)  100.0        Lat Lx with AH  22  18 (17)  4    .751     Percent    81.8 (77.3)  18.2  R vs L      R Lx + AH  10  8 (8)  2  1       Percent    80.0 (80.0)  20.0        L Lx + AH  12  10 (9)  2  Lx + HC/path       Percent    83.3 (75.0)  16.7  .3042      Lx + AH with MTS  2  2 (2)  0         Percent    100.0 (100.0)  0.0        Lx + AH with tumor  14  11 (10)  3         Percent    78.6 (71.4)  21.4        Lx + AH dysplasia/other  6  5 (5)  1         Percent    83.3 (83.3)  16.7        Lat Lx without AH  51  48 (46)  3    .0374  positive   Percent    94.1 (90.2)  5.9  R vs L      R Lx without AH  26  25 (25)  1  .6098       Percent    96.2 (96.2)  3.8        L Lx without AH  25  23 (21)  2         Percent    92.0 (84.0)  8.0  Lx no HC      Lx without AH tumor  34  33 (32)  1  .2068       Percent    97.1 (94.1)  2.9        Lx without AH other  17  15 (14)  2         Percent    88.2 (82.4)  11.8        Totals  184  156 (145)  28         Percent    84.8 (78.8)  15.2        L = left; R = right; ATL = anterior temporal lobectomy; MTS = mesial temporal sclerosis; AH = amygdalohippocampectomy; Lx = lesionectomy; lat = lateral. View Large For cases with known dual pathology, the surgical strategy consisted either in ATL, typically including the lesion within the ATL (n = 9), or lesionectomy plus AH (n = 1). However, the series did not include a case with reoperation for a failed pure neocortical resection. In total, there were 9 reoperations, typically involving a more extensive resection (n = 7), but also including 1 vagal nerve stimulator implantation and 1 hemispherotomy after failed ATL because of multiple infarcts with extensive parenchymal damage. Postoperative examinations of visual fields were available for 141 patients, with normal findings in 102 (72.3%). Incomplete or complete upper contralateral quadrantanopia was observed in 30 patients (21.3%). Nine patients had a complete contralateral homonymous hemianopia (6.4%). Patients untested were typically due to young age. There were no intraoperative or postoperative deaths in this series. Intraoperative complications included a small arterial injury in 1 patient, a small venous injury in 1 patient, and a brief cardiac pause that resolved without complication in 1 patient. Postoperative complications included 2 patients with lasting hemiparesis (1.1%), 3 patients with infarcts (1.6%), 6 cases of postoperative meningitis (3.3%), 2 postoperative hemorrhages (1 requiring revision surgery; 1.1%), and 2 wound infections requiring revision (1.1%), for a total operating complication rate of 9.8%. Collective Pediatric TLE Experience A review of the literature was undertaken of all reported surgical pediatric TLE cases with data extracted related to surgical approach, pathological diagnosis, complications, and seizure outcome (Table 1). A total of 2089 unique cases were identified, of which there were 841 ATL, 403 AH, and 243 lesionectomy (some approaches not extractable). In terms of pathology, 617 patients had MTS, 672 had tumors, 276 had cortical dysplasia, and 258 had other pathology (some with multiple pathologies). Permanent neurological deficits were reported in 1.9% of patients, hematoma in 1.2%, permanent visual field deficits in 14.4%, infection in 3.7%, reoperation in 10.1%, and an overall reported complication rate of 9.4% (not including visual field deficits). Satisfactory seizure outcomes occurred in 1629 patients (79%) with unsatisfactory outcomes in 433 (21%). DISCUSSION Clinical Outcomes In this study, 183 consecutive pediatric TLE patients were evaluated. This represents, to our knowledge, the largest single study ever reported in the literature. Overall, we observed a satisfactory seizure control rate of 84.7%. In general, outcomes have improved over time, with better outcomes reported in more recent series.1-38 This is likely due to improvements in invasive and noninvasive techniques to determine seizure localization, and lesion detection and excision. Length of follow-up and seizure freedom It has been previously suggested that the durability of seizure freedom after surgery is limited by time.38 This was reported as time to first seizure, but this results in some good outcomes being censored early due to a single seizure event. Perhaps a more relevant indicator of durability is the patient's Engel score at time of last follow-up, with patients grouped by length of follow-up (Figure). Patients were divided approximately in thirds by length of follow-up. There was no statistically significant difference in Engel I outcomes with greater follow-up (P = .7770). Any worsening in durability over time may be limited to Engel II-IV patients, implying that incomplete resection of the epileptogenic zone (as represented by early non-Engel I outcomes) risks surgical durability. Histopathological and Imaging Features One hundred eighty-two of 183 patients had a histopathological diagnosis (99.5%); 1 remained unclear but abnormal. Of the 182 lesions with a diagnosis, 96 were non-neoplastic (52.7%), 80 were neoplastic (49.3%), and 6 were normal (3.3%). Among the neoplasms, 65 were benign and 15 were malignant, emphasizing the mostly benign nature of epilepsy-associated temporal neoplasms in children.1,28,73,74 The most frequent diagnosis in this cohort was MTS. This correlates well with the frequency of MTS causing TLE in adult patients. Additional diagnoses included cortical dysplasia, gliosis, heterotopias, and a few miscellaneous lesions. Only other/normal was associated with worse outcomes (66.7%, P = .0421, see Table 3). Positive imaging findings on MRI were also predictive of good surgical outcome (see Table 3). This suggests that any abnormality correlating with seizure localization should be targeted for resection, with expected excellent seizure freedom with good durability. Resection Strategies Resection strategies have been adjusted over time, as new information altered patient management. Early series involved localization only to the temporal lobe, with ATL being the treatment of choice. Increasingly, invasive monitoring and improvements in MR imaging have been used to more precisely localize the epileptogenic focus, resulting in more tailored approaches.1 When reporting the first approximately half of patients in this series, left-sided surgery and AH both resulted in less satisfactory seizure control. These effects were lost with a larger patient cohort, showing some of the challenges of relying on nonrandomized, small case series in drawing firm conclusions. Lesionectomy was the only procedure that positively correlated with seizure outcomes, although all procedures resulted in favorable seizure control rates. The high success rate of lesionectomy (94.1%) may be due to the association of lesional tissue with epileptogenic focus, and the greater ease of lesional resection. It is important to emphasize the somewhat disappointing results with AH in our previously published pediatric series.1 We believe this may have been related to multiple pathologies being present with MTS in pediatric patients (35.19%). By becoming more selective in which patients underwent AH alone, while not improving overall seizure freedom, we did improve results in AH patients alone (74.1% previously reported, now 86.7% in patients since 2001). This implies that patients with multiple pathologies, even after ATL, are less likely to achieve seizure freedom. Therefore, patients with multiple pathologies should undergo careful preoperative evaluation that likely includes invasive monitoring to help better select patients for surgery. As far as complications are concerned, complications reported in this study correlate well with those reported in other series.1-38 Neuropsychological Findings In extending our previous report from 2004, we were now able to evaluate the cognitive outcome of the largest series of surgical pediatric TLE patients. Using composite scores and categorical data instead of psychometric test raw data for all available scores yields some loss of information, but it helped to overcome serious methodological issues related to neuropsychological evaluations in pediatric samples (eg, use of different instruments for domains for different age groups, varying sample sizes for individual measures, and small sample of patients with complete datasets). Overall, and perhaps most importantly, we found no evidence for systematic postsurgical cognitive decline. Apart from a nonsignificant difference of more frequent language impairment in L-TLE patients, no significant lateralization effects were seen in the presurgical performance data. Postoperatively, however, the frequency of cognitive impairments in L-TLE and R-TLE patients differed for verbal memory and visuospatial abilities in accordance with a well-established pattern dependent on hemisphere language dominance. In this regard, it is important to note that this pattern resulted not from differential losses but improvements and recovery in left vs right TLE. These results match well with previous data showing long-term postoperative improvements in intellectual function related to tempering of the AED, and differential memory outcomes including episodic memory being better with sparing hippocampus and semantic memory better with sparing of the temporal pole.63,75 Overall, our data underline the safety of TLE surgery in children as far as cognitive outcome is concerned. Collective Pediatric TLE Experience It is important to note the unique cohort of patients in this pediatric series (a number of older patients, many with tumors, few with dysplasia or intellectual disability). This is likely at least part of the explanation for the higher seizure-free rates presented in this series. In order to better illustrate the benefit of surgery for medically refractory pediatric temporal-lobe epilepsy patients, we reviewed all surgical pediatric TLE cases reported in the literature we could find with extractable data regarding seizure outcomes, and where possible, surgical approach and complication rates. A total of 2089 unique cases were identified where outcomes data were available (841 ATL, 403 AH, and 243 lesionectomies). While there were significant differences in patient selection, series size, preoperative workup, and modality of treatment, this review helps put surgical treatment of pediatric TLE in historical and modern perspective. Overall, complications are quite acceptable and commensurate with craniotomy for other indications. These outcomes favor surgical treatment of all cases of medically refractory epilepsy localizing to the temporal lobe. CONCLUSION Pediatric patients benefit from surgery for medically refractory TLE. Seizure freedom appears to have extensive durability in a large proportion of surgically treated patients. Disclosure The authors have no personal, financial, or institutional interest in any of the drugs, materials, or devices described in this article. REFERENCES 1. Clusmann H, Kral T, Gleissner U et al.   Analysis of different types of resection for pediatric patients with temporal lobe epilepsy. Neurosurgery . 2004; 54( 4): 847- 860. Google Scholar CrossRef Search ADS PubMed  2. Davidson S, Falconer M. Outcome of surgery in 40 children with temporal-lobe epilepsy. Lancet . 1975; 1( 7919): 1260- 1263. Google Scholar CrossRef Search ADS PubMed  3. Rasmussen T. Surgical treatment of complex partial seizures: results, lessons, and problems. Epilepsia . 1983; 24( s1): S65- S76. Google Scholar CrossRef Search ADS PubMed  4. Green J, Pootrakul A. Surgical aspects of the treatmentof epilepsy during childhood and adolescence. Ariz Med . 1982; 39: 35- 38. Google Scholar PubMed  5. Vaernet K. Temporal Lobotomy in Children and Young Adults . New York: Raven Press; 1983. 6. Meyer F, Marsh W, Laws EJ, Sharbrough F. Temporal lobectomy in children with epilepsy. J Neurosurg . 1986; 64( 3): 371- 376. Google Scholar CrossRef Search ADS PubMed  7. Engel J, Van Ness P, Rasmussen T, Ojemann L. Outcome With Respect to Epileptic Seizures . New York: Raven Press; 1992. 8. Radhakrishnan K, So E, Silbert P et al.   Predictors of outcome of anterior temporal lobectomy for intractable epilepsy: a multivariate study. Neurology . 1998; 51( 2): 465- 471. Google Scholar CrossRef Search ADS PubMed  9. Arruda F, Cendes F, Andermann F et al.   Mesial atrophy and outcome after amygdalohippocampectomy or temporal lobe removal. Ann Neurol . 1996; 40( 3): 446- 450. Google Scholar CrossRef Search ADS PubMed  10. Clusmann H, Schramm J, Kral T et al.   Prognostic factors and outcome after different types of resection for temporal lobe epilepsy. J Neurosurg . 2002; 97( 5): 1131- 1141. Google Scholar CrossRef Search ADS PubMed  11. Goldstein L, Polkey C. Short-term cognitive changes after unilateral temporal lobectomy or unilateral amygdalo-hippocampectomy for the relief of temporal lobe epilepsy. J Neurol Neurosurg Psychiatry . 1993; 56( 2): 135- 140. Google Scholar CrossRef Search ADS PubMed  12. Helmstaedter C, Elger C, Hufnagel A, Zentner J, Schramm J. Different effects of left anterior temporal lobectomy, selective amygdalohippocampectomy, and temporal cortical lesionectomy on verbal learning, memory, and recognition. J Epilepsy . 1996; 9( 1): 39- 45. Google Scholar CrossRef Search ADS   13. Rutledge S, Snead OC 3rd, Morawetz R, Chandra-Sekar B. Brain tumors presenting as a seizure disorder in infants. J Child Neurol . 1987; 2( 3): 214- 219. Google Scholar CrossRef Search ADS PubMed  14. Drake J, Hoffman H, Kobayashi J, Hwang P, Becker L. Surgical management of children with temporal lobe epilepsy and mass lesions. Neurosurgery . 1987; 21( 6): 792- 797. Google Scholar CrossRef Search ADS PubMed  15. Harbord M, Manson J. Temporal lobe epilepsy in childhood: reappraisal of etiology and outcome. Pediatr Neurol . 1987; 3( 5): 263- 268. Google Scholar CrossRef Search ADS PubMed  16. Adams C, Beardsworth E, Oxbury S, Oxbury J, Fenwick P. Temporal lobectomy in 44 children: outcome and neuropsychological follow-up. J Epilepsy . 1990; 3: 157- 168. Google Scholar CrossRef Search ADS   17. Mizrahi E, Kellaway P, Grossman R et al.   Anterior temporal lobectomy and medically refractory temporal lobe epilepsy of childhood. Epilepsia . 1990; 31( 3): 302- 312. Google Scholar CrossRef Search ADS PubMed  18. Hopkins I, Klug G. Temporal lobectomy for the treatment of intractable complex partial seizures of temporal lobe origin in early childhood. Dev Med Child Neurol . 1991; 33( 1): 26- 31. Google Scholar CrossRef Search ADS PubMed  19. Duchowny M, Levin B, Jayakar P et al.   Temporal lobectomy in early childhood. Epilepsia . 1992; 33( 2): 298- 303. Google Scholar CrossRef Search ADS PubMed  20. Adelson PD, Peacock WJ, Chugani HT et al.   Temporal and extended temporal resections for the treatment of intractable seizures in early childhood. Pediatr Neurosurg . 1992; 18( 4): 169- 178. Google Scholar CrossRef Search ADS PubMed  21. Jay V, Becker L, Otsubo H, Hwang P, Hoffman H, Harwood-Nash D. Pathology of temporal lobectomy for refractory seizures in children. J Neurosurg . 1993; 79( 1): 53- 61. Google Scholar CrossRef Search ADS PubMed  22. Gilliam F, Wyllie E, Kashden J et al.   Epilepsy surgery outcome: comprehensive assessment in children. Neurology . 1997; 48( 5): 1368- 1374. Google Scholar CrossRef Search ADS PubMed  23. Blume WT, Girvin JP, McLachlan RS, Gilmore BE. Effective temporal lobectomy in childhood without invasive EEG. Epilepsia . 1997; 38( 2): 164- 167. Google Scholar CrossRef Search ADS PubMed  24. Salanova V, Markand O, Worth R et al.   FDG-PET and MRI in temporal lobe epilepsy: relationship to febrile seizures, hippocampal sclerosis and outcome. Acta Neurol Scand . 1998; 97( 3): 146- 153. Google Scholar CrossRef Search ADS PubMed  25. Szabó C, Wyllie E, Stanford L et al.   Neuropsychological effect of temporal lobe resection in preadolescent children with epilepsy. Epilepsia . 1998; 39( 8): 814- 819. Google Scholar CrossRef Search ADS PubMed  26. Williams J, Griebel M, Sharp G, Boop F. Cognition and behavior after temporal lobectomy in pediatric patients with intractable epilepsy. Pediatr Neurol . 1998; 19( 3): 189- 194. Google Scholar CrossRef Search ADS PubMed  27. Munari C, Lo R, Minotti L et al.   Presurgical strategies and epilepsy surgery in children: comparison of literature and personal experiences. Childs Nerv Syst . 1999; 15( 4): 149- 157. Google Scholar CrossRef Search ADS PubMed  28. Iannelli A, Guzzetta F, Battaglia D, Iuvone L, Di Rocco C. Surgical treatment of temporal tumors associated with epilepsy in children. Pediatr Neurosurg . 2000; 32( 5): 248- 254. Google Scholar CrossRef Search ADS PubMed  29. Robinson S, Park T, Blackburn L, Bourgeois B, Arnold S, Dodson W. Transparahippocampal selective amygdalohippocampectomy in children and adolescents: Efficacy of the procedure and cognitive morbidity in patients. J Neurosurg . 2000; 93( 3): 402- 409. Google Scholar CrossRef Search ADS PubMed  30. Paolicchi JM, Jayakar P, Dean P et al.   Predictors of outcome in pediatric epilepsy surgery. Neurology . 2000; 54( 3): 642- 642. Google Scholar CrossRef Search ADS PubMed  31. Mohamed A, Wyllie E, Ruggieri P et al.   Temporal lobe epilepsy due to hippocampal sclerosis in pediatric candidates for epilepsy surgery. Neurology . 2001; 56( 12): 1643- 1649. Google Scholar CrossRef Search ADS PubMed  32. Sinclair DB, Aronyk KE, Snyder TJ et al.   Pediatric epilepsy surgery at the University of Alberta: 1988-2000. Pediatr Neurol . 2003; 29( 4): 302- 311. Google Scholar CrossRef Search ADS PubMed  33. Mittal S, Montes J, Farmer J et al.   Long-term outcome after surgical treatment of temporal lobe epilepsy in children. J Neurosurg . 2005; 103( 5 Suppl): 401- 412. Google Scholar PubMed  34. Maton B, Jayakar P, Resnick T, Morrison G, Raghed J, Duchowny M. Surgery for medically intractable temporal lobe epilepsy during early life. Epilepsia . 2008; 49( 1): 80- 87. Google Scholar CrossRef Search ADS PubMed  35. Kim S, Wang K, Hwang Y et al.   Epilepsy surgery in children: outcomes and complications. J Neurosurg Pediatr . 2008; 1( 4): 277- 283. Google Scholar CrossRef Search ADS PubMed  36. Kan P, Van Orman C, Kestle JR. Outcomes after surgery for focal epilepsy in children. Childs Nerv Syst . 2008; 24( 5): 587- 591. Google Scholar CrossRef Search ADS PubMed  37. Lee YJ, Kang HC, Bae SJ et al.   Comparison of temporal lobectomies of children and adults with intractable temporal lobe epilepsy. Childs Nerv Syst . 2010; 26( 2): 177- 183. Google Scholar CrossRef Search ADS PubMed  38. Lopez-Gonzalez MA, Gonzalez-Martinez JA, Jehi L, Kotagal P, Warbel A, Bingaman W. Epilepsy surgery of the temporal lobe in pediatric population. Neurosurgery . 2012; 70( 3): 684- 692. Google Scholar CrossRef Search ADS PubMed  39. Goldstein R, Harvey A, Duchowny M et al.   Preoperative clinical, EEG, and imaging findings do not predict seizure outcome following temporal lobectomy in childhood. J Child Neurol . 1996; 11( 6): 445- 450. Google Scholar CrossRef Search ADS PubMed  40. Bizzi J, Bruce D, North R et al.   Surgical treatment of focal epilepsy in children; results in 37 patients. Pediatr Neurosurg . 1997; 26( 2): 83- 92. Google Scholar CrossRef Search ADS PubMed  41. Gashlan M, Loy-English I, Ventureyra E, Keene D. Predictors of seizure outcome following cortical resection in pediatric and adolescent patients with medically refractory epilepsy. Childs Nerv Syst . 1999; 15( 1): 45- 50. Google Scholar CrossRef Search ADS PubMed  42. Khajavi K, Comair Y, Wyllie E, Palmer J, Morris H, Hahn J. Surgical management of pediatric tumor-associated epilepsy. J Child Neurol . 1999; 14( 1): 15- 25. Google Scholar CrossRef Search ADS PubMed  43. Sotero de Menezes M, Connolly M, Bolanos A, Madsen J, Black P, Riviello J Jr. Temporal lobectomy in early childhood: the need for long-term follow-up. J Child Neurol . 2001; 16( 8): 585- 590. Google Scholar CrossRef Search ADS PubMed  44. Sinclair D, Aronyk K, Snyder T et al.   Pediatric epilepsy surgery at the University of Alberta: 1988-2000. Pediatr Neurol . 2003; 29( 4): 302- 311. Google Scholar CrossRef Search ADS PubMed  45. Cataltepe O, Turanli G, Yalnizoglu D, Topçu M, Akalan N. Surgical management of temporal lobe tumor-related epilepsy in children. J Neurosurg . 2005; 102( 3 Suppl): 280- 287. Google Scholar PubMed  46. Freitag H, Tuxhorn I. Cognitive function in preschool children after epilepsy surgery: rationale for early intervention. Epilepsia . 2005; 46( 4): 561- 567. Google Scholar CrossRef Search ADS PubMed  47. Korkman M, Granström M, Kantola-Sorsa E et al.   Two-year follow-up of intelligence after pediatric epilepsy surgery. Pediatr Neurol . 2005; 33( 3): 173- 178. Google Scholar CrossRef Search ADS PubMed  48. McLellan A, Davies S, Heyman I et al.   Psychopathology in children with epilepsy before and after temporal lobe resection. Dev Med Child Neurol . 2005; 47( 10): 666- 672. Google Scholar CrossRef Search ADS PubMed  49. Terra-Bustamante V, Inuzuca L, Fernandes R et al.   Temporal lobe epilepsy surgery in children and adolescents: clinical characteristics and post-surgical outcome. Seizure . 2005; 14( 4): 274- 281. Google Scholar CrossRef Search ADS PubMed  50. Benifla M, Otsubo H, Ochi A et al.   Temporal lobe surgery for intractable epilepsy in children: an analysis of outcomes in 126 children. Neurosurgery . 2006; 59( 6): 1203- 1214. Google Scholar CrossRef Search ADS PubMed  51. Larysz D, Larysz P, Mandera M. Evaluation of quality of life and clinical status of children operated on for intractable epilepsy. Childs Nerv Syst . 2006; 23( 1): 91- 97. Google Scholar CrossRef Search ADS PubMed  52. Liu S, An N, Yang H et al.   Pediatric intractable epilepsy syndromes: reason for early surgical intervention. Brain Dev . 2007; 29( 2): 69- 78. Google Scholar CrossRef Search ADS PubMed  53. de Koning T, Versnel H, Jennekens-Schinkel A et al.   Language development before and after temporal surgery in children with intractable epilepsy. Epilepsia . 2009; 50( 11): 2408- 2419. Google Scholar CrossRef Search ADS PubMed  54. Lee J, Lee B, Joo E et al.   Dysembryoplastic neuroepithelial tumors in pediatric patients. Brain Dev . 2009; 31( 9): 671- 681. Google Scholar CrossRef Search ADS PubMed  55. Hemb M, Velasco T, Parnes M et al.   Improved outcomes in pediatric epilepsy surgery: The UCLA experience, 1986-2008. Neurology . 2010; 74( 22): 1768- 1775. Google Scholar CrossRef Search ADS PubMed  56. López H, Fohlen M, Lelouch-Tubiana A et al.   Heterotopia associated with hippocampal sclerosis: an under-recognized cause of early onset epilepsy in children operated on for temporal lobe epilepsy. Neuropediatrics . 2010; 41( 04): 167- 175. Google Scholar CrossRef Search ADS PubMed  57. Ogiwara H, Nordli D, DiPatri A, Alden T, Bowman R, Tomita T. Pediatric epileptogenic gangliogliomas: seizure outcome and surgical results. J Neurosurg Pediatr . 2010; 5( 3): 271- 276. Google Scholar CrossRef Search ADS PubMed  58. Zupanc M, Rubio E, Werner R et al.   Epilepsy surgery outcomes: quality of life and seizure control. Pediatr Neurol . 2010; 42( 1): 12- 20. Google Scholar CrossRef Search ADS PubMed  59. Cersósimo R, Flesler S, Bartuluchi M, Soprano A, Pomata H, Caraballo R. Mesial temporal lobe epilepsy with hippocampal sclerosis: study of 42 children. Seizure . 2011; 20( 2): 131- 137. Google Scholar CrossRef Search ADS PubMed  60. Dagar A, Chandra P, Chaudhary K et al.   Epilepsy surgery in a pediatric population: a retrospective study of 129 children from a tertiary care hospital in a developing country along with assessment of quality of life. Pediatr Neurosurg . 2011; 47( 3): 186- 193. Google Scholar CrossRef Search ADS PubMed  61. García-Fernández M, Fournier-Del Castillo C, Ugalde-Canitrot A et al.   Epilepsy surgery in children with developmental tumours. Seizure . 2011; 20( 8): 616- 627. Google Scholar CrossRef Search ADS PubMed  62. Jayalakshmi S, Panigrahi M, Kulkarni D, Uppin M, Somayajula S, Challa S. Outcome of epilepsy surgery in children after evaluation with non-invasive protocol. Neurol India . 2011; 59( 1): 30- 36. Google Scholar CrossRef Search ADS PubMed  63. Skirrow C, Cross J, Cormack F, Harkness W, Vargha-Khadem F, Baldeweg T. Long-term intellectual outcome after temporal lobe surgery in childhood. Neurology . 2011; 76( 15): 1330- 1337. Google Scholar CrossRef Search ADS PubMed  64. Uliel-Sibony S, Kramer U, Fried I, Fattal-Valevski A, Constantini S. Pediatric temporal low-grade glial tumors: epilepsy outcome following resection in 48 children. Childs Nerv Syst . 2011; 27( 9): 1413- 1418. Google Scholar CrossRef Search ADS PubMed  65. Kasasbeh A, Hwang E, Steger-May K et al.   Association of magnetic resonance imaging identification of mesial temporal sclerosis with pathological diagnosis and surgical outcomes in children following epilepsy surgery. J Neurosurg Pediatr . 2012; 9( 5): 552- 561. Google Scholar CrossRef Search ADS PubMed  66. Dwivedi R, Ramanujam B, Chandra P et al.   Surgery for drug-resistant epilepsy in children. N Engl J Med . 2017; 377( 17): 1639- 1647. Google Scholar CrossRef Search ADS PubMed  67. Kuzniecky R, Burgard S, Faught E, Morawetz R, Bartolucci A. Predictive value of magnetic resonance imaging in temporal lobe epilepsy surgery. Arch Neurol . 1993; 50( 1): 65- 69. Google Scholar CrossRef Search ADS PubMed  68. Behrens E, Schramm J, Zentner J, Konig R. Surgical and neurological complications in a series of 708 epilepsy surgery procedures. Neurosurgery . 1997; 41( 1): 1- 10. Google Scholar CrossRef Search ADS PubMed  69. Kral T, Clusmann H, Urbach H et al.   Preoperative evaluation for epilepsy surgery (Bonn algorithm). Zentralbl Neurochir . 2002; 63( 03): 106- 110. Google Scholar CrossRef Search ADS PubMed  70. Wellmer J, von der Groeben F, Klarmann U et al.   Risks and benefits of invasive epilepsy surgery workup with implanted subdural and depth electrodes. Epilepsia . 2012; 53( 8): 1322- 1332. Google Scholar CrossRef Search ADS PubMed  71. Association AP. Diagnostic and Statistical Manual of Mental Disorders . 5th ed. Arlington, VA: American Psychiatric Publishing; 2013. Google Scholar CrossRef Search ADS   72. Yasa̧rgil M, Teddy P, Roth P. Selective amygdalo-hippocampectomy: operative anatomy and surgical technique. Adv Tech Stand Neurosurg . 1985; 12: 93- 123. Google Scholar CrossRef Search ADS PubMed  73. Stanescu Cosson R, Varlet P, Beuvon F et al.   Dysembryoplastic neuroepithelial tumors: CT, MR findings and imaging follow-up—a study of 53 cases. J Neuroradiol . 2001; 28 (4): 230- 240. Google Scholar PubMed  74. Wolf H, Campos M, Zentner J et al.   Surgical pathology of temporal lobe epilepsy. Experience with 216 cases. J Neuropathol Exp Neurol . 1993; 42( 5): 499- 506. Google Scholar CrossRef Search ADS   75. Skirrow C, Cross J, Harrison S et al.   Temporal lobe surgery in childhood and neuroanatomical predictors of long-term declarative memory outcome. Brain . 2015; 138( 1): 80- 93. Google Scholar CrossRef Search ADS PubMed  COMMENTS The authors present a retrospective, single-center, “real world” review of 183 children undergoing craniotomy and temporal lobe resection for drug-resistant epilepsy, the largest pediatric series in the literature. They compare their results to an extensive review of the world literature. Overall, the seizure outcomes were excellent, with only 5.4% of patients not experiencing meaningful seizure reduction, regardless of seizure type or imaging findings and with a variety of surgical strategies. With a minimum follow-up of 12 months and a mean follow-up of 42 months, the seizure outcomes were durable over time, especially in patients with an excellent surgical outcome. The authors are to be commended for this important contribution to the growing body of literature demonstrating a high level of treatment efficacy regarding surgery for drug-resistant epilepsy in children. Daxa Patel Robert J. Bollo Salt Lake City, Utah This manuscript is a report of 24 years of experience in temporal lobe epilepsy surgery from a major epilepsy center, with excellent results. The authors report that this is the largest such series to date, including 183 children, with a mean follow-up of 42 months. The vast majority had a good outcome and the neuropsychological outcomes also showed no significant declines after surgery. Complications were within the previously reported ranges. Their major conclusion is that seizure-free outcomes are durable, based on their use of the Engel score at the time of follow-up, as opposed to the time-to-first seizure assessment used in another study which showed a decline in seizure-free durability over time. They also review the literature on this topic. This is a very large series, and a well-written and thoughtful analysis, especially the authors’ detailed discussion of their evolving surgical approach, which is often not included in such series. This aspect has benefit for epilepsy pediatric neurosurgeons. This series describes the unique profile of a cohort of pediatric patients: the majority were over age 12 years, nearly half were tumor patients, few with cortical dysplasia or with intellectual disability, and only a little more than one-quarter had invasive monitoring—a generally more favorable selection of patients. This is unique to temporal lobe epilepsy pediatric surgical patients, and appears distinct from the published series they cite. Howard L. Weiner Houston, Texas The authors present a powerful single-institution review of pediatric temporal lobe epilepsy patients who underwent surgical resection from 1988–2012. The 183 patients reviewed represents nearly 10% of all the published surgical cases published. A little over 25% of the patients underwent invasive intracranial monitoring, although the breakdown of monitoring modality (SEE vs ECOG) was not described. Since the time of this cohort, we have learned that through long-term invasive intracranial monitoring, up to one-third suspected unilateral onset patients, when monitored for a month will have bilateral onset seizures.1 Although at the time, this knowledge for the above patients may not have altered the surgical techniques employed, now responsive neuro-stim (RNS) offers a bilaterally directed therapy. This knowledge of more prevalent bilateral onset than once suspected may allow us to even further improve upon outcomes reported in this cohort. Despite changes in surgical technique over time as described by the authors, these data as presented support the durability of an open resective approach to treat epilepsy of suspected temporal origin epilepsy in the pediatric population. Surgical approaches for treatment of pediatric temporal lobe epilepsy are evolving. The study period spans the introduction of selective laser amygdohippocampectomy (SLAH), responsive neurostimulation (RNS), and repetitive transcranial magnetic stimulation (rTMS) which remain investigational in the pediatric population. As these techniques continue to undergo rigorous evaluation for safety and efficacy, these approaches can be utilized to augment, improve, or some cases replace open surgical options. Increasingly, data suggests the less invasive, SLAH, may render incur fewer memory and speech deficits for our patients than open techniques.2 Further, we recognize that a reduction in seizure frequency or Engel class may not capture the effect on a patient's quality of life. As patients are able to decrease anti-epileptic drug dosing, resultant improvements in memory and mood often follow suit. Even mild reductions in seizure frequency, that allow wean of anti-epileptic drugs, may yield significant improvement in the traditionally more challenging to quantify, quality of life measures. Jonathon J. Parker Gerald Grant Stanford, California 1. King-Stephens D, Mirro E, Weber PB et al.   Lateralization of mesial temporal lobe epilepsy with chronic ambulatory electrocorticography. Epilepsia . 2015; 56( 6): 959- 967. Google Scholar CrossRef Search ADS PubMed  2. Drane DL, Loring DW, Voets NL et al.   Better object recognition and naming outcome with MRI-guided stereotactic laser amygdalohippocampectomy for temporal lobe epilepsy. Epilepsia . 2015; 56( 1): 101- 113. Google Scholar CrossRef Search ADS PubMed  Copyright © 2018 by the Congress of Neurological Surgeons http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neurosurgery Oxford University Press

Pediatric Temporal Lobe Epilepsy Surgery in Bonn and Review of the Literature

Loading next page...
 
/lp/ou_press/pediatric-temporal-lobe-epilepsy-surgery-in-bonn-and-review-of-the-M0UaQiW6Qr
Publisher
Congress of Neurological Surgeons
Copyright
Copyright © 2018 by the Congress of Neurological Surgeons
ISSN
0148-396X
eISSN
1524-4040
D.O.I.
10.1093/neuros/nyy125
Publisher site
See Article on Publisher Site

Abstract

Abstract BACKGROUND Epilepsy surgery is well established as safe and successful for children with temporal lobe epilepsy (TLE). Despite evidence from available data, there remains some reluctance to refer children with medically refractory epilepsy for preoperative evaluation and workup for possible surgery. OBJECTIVE To present the largest case series of pediatric (TLE) patients thus far, in order to better understand the predictability of preoperative evaluation on seizure outcome, and to better understand longitudinal outcomes in a large pediatric cohort. METHODS One hundred eighty-three pediatric patients with TLE who underwent surgical treatment between 1988 and 2012 were retrospectively reviewed. Preoperative seizure history, noninvasive and invasive preoperative evaluation, surgical results, pathological results, long-term seizure outcomes, and complications were evaluated. A review of pediatric TLE in the literature was also undertaken to better understand reported complications and long-term outcomes. RESULTS Mean follow-up was 42 mo (range 12-152 mo); 155 patients had good seizure outcomes (Engel I/II; 84.8%) and 28 patients had poor seizure outcomes (Engel III/IV; 15.2%); 145 patients were Engel I (78.8%). Only 10 patients did not have worthwhile improvement (Engel class IV; 5.4%). A review of the literature identified 2089 unique cases of pediatric TLE. Satisfactory seizure outcomes occurred in 1629 patients (79%) with unsatisfactory outcomes in 433 patients (21%). CONCLUSION Pediatric patients benefit from surgery for medically refractory TLE with an acceptable safety profile regardless of histopathological diagnosis, seizure frequency, or seizure type. Seizure freedom appears to have extensive durability in a significant proportion of surgically treated patients. Pediatric temporal lobe epilepsy, Epilepsy surgery ABBREVIATIONS ABBREVIATIONS AH amygdalohippocampectomy ATL anterior temporal lobectomy EEG electroencephalogram MRI magnetic resonance imaging MTS mesial temporal sclerosis TLE temporal lobe epilepsy WHO World Health Organization Selected cases of temporal lobe epilepsy (TLE) have long proven to be benefited by surgical treatment.1-6 Surgical experience and advances in imaging and technology have resulted in improved surgical outcomes, with better outcomes reported in more recent series (see Table 1).1-66 This is likely due to a combination of high-resolution magnetic resonance imaging (MRI) techniques, microneurosurgery, and better methods of patient selection both with invasive and noninvasive monitoring.67-69 Epilepsy surgery is well established as safe and successful for children with TLE. Despite evidence from available data, there remains some reluctance to refer children with medically refractory epilepsy for preoperative evaluation and workup for possible surgery. Recently, there has also been some suggestion of loss of efficacy of surgical benefit over time, potentially adding to this reluctance.38 In this study, we present the largest series of pediatric TLE patients ever reported in order to better understand longitudinal outcomes in a pediatric cohort, examine the predictability of various factors on seizure outcome, better describe neuropsychological outcomes in children after surgical treatment forTLE, and to assess overall published efficacy of TLE surgery (see Table 1). TABLE 1. Pediatric Temporal Lobe Epilepsy Series Reported in the Literature     Surgery  Pathology  Complications        Publication  Patients  ATL  AH  Lx  MTS  Tumor  Dysplasia  Other  Permanent neuro deficit (excl. vision)  Hematoma  visual field deficit  Infection  Reoperation  Overall complication rate (%)  Engel I/II  Engel III/IV  Comments  Davidson and Falconer, 19752  40  40  0  0  24  12  0  8  NR  NR  NR  NR  NR  NR  31  9    Green and Pootrakul, 19824  32  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  26  6    Vaernet et al, 19835  33  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  20  13    Rasmussen, 19833  99  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  59  40    Meyer et al, 19866  50  50  0  0  NR  6  NR  NR  1  0  20  2  NR  8  39  11    Rutledge et al, 198713  3  0  0  2  0  3  0  0  NR  NR  NR  NR  NR  NR  3  0  third case biopsy only of AA  Drake et al, 198714  16  16  0  0  8  12  NR  4  NR  NR  NR  NR  NR  NR  9  7    Harbord and Manson, 198715  16  16  0  0  NR  9  1  6  NR  NR  NR  NR  NR  NR  11  4    Adams et al, 199016  44  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  29  15    Mizrahi et al, 199017  8  8  0  0  3  0  0  5  NR  NR  NR  NR  NR  NR  3  5    Hopkins and Klug, 199118  11  10  0  1  1  5  1  4  2  NR  2  NR  NR  NR  8  3    Duchowny et al, 199219  16  16  0  0  1  4  1  10  0  NR  NR  2  NR  NR  11  5    Adelson et al, 199220  33  33  0  0  5  16  9  13  NR  NR  NR  NR  NR  6  23  10    Jay et al, 199321  20  NR  NR  NR  12  10  3  3  NR  NR  NR  NR  NR  NR  12  8    Goldstein et al, 199639  33  33  0  0  6  8  NR  23  NR  NR  NR  NR  NR  NR  15  18    Bizzi et al, 199740  14  14  0  0  2  3  2  12  0  0  1  0  NR  21.4  11  3    Blume et al, 199723  14  14  0  0  7  8  NR  5  NR  NR  NR  NR  NR  NR  13  1    Gilliam et al, 199722  18  NR  NR  NR  2  10  6  3  0  NR  NR  NR  NR  NR  13  5    Salanova et al, 199824  3  3  0  0  3  0  0  0  NR  NR  NR  NR  NR  NR  2  1    Szabo et al, 199825  14  14  0  0  4  7  2  1  NR  NR  NR  NR  NR  NR  13  1    Williams et al, 199826  9  9  0  0  5  1  0  3  NR  NR  NR  NR  NR  NR  8  1    Gashlan et al, 199941  39  NR  NR  NR  NR  11  NR  NR  NR  NR  NR  NR  NR  NR  26  13    Khajavi et al, 199942  23  23  0  0  1  23  0  NR  NR  NR  NR  NR  NR  NR  19  4    Munari et al, 199927  21  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  2.1  21  0    Iannelli et al, 200028  32  0  0  32  0  32  0  0  NR  NR  NR  NR  NR  NR  30  2    Robinson et al, 200029  21  0  22  0  21  NR  NR  NR  2  0  1  1  NR  13.6  15  6    Paolicchi et al, 200030  29  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  19  10    Mohamed et al, 200131  34  34  0  0  15  NR  8  NR  NR  NR  NR  NR  NR  NR  26  7    Sotero de Menezes et al, 200143  15  11  11  4  10  4  1  1  1  NR  NR  NR  3  NR  7  8    Sinclair et al, 200344  42  42  0  0  13  17  4  12  NR  NR  NR  NR  NR  4  33  9    Cataltepe et al, 200545  29  23  12  6  2  29  0  0  0  0  4  1  2  17.2  24  5    Freitag et al, 200546  16  NR  NR  NR  1  13  2  0  NR  NR  NR  NR  NR  NR  16  0    Korkman et al, 200547  23  NR  NR  NR  NR  9  1  16  NR  NR  NR  NR  NR  NR  21  2    McLellan et al, 200548  60  NR  NR  NR  33  23  6  6  NR  NR  NR  NR  NR  NR  37  20    Mittal et al, 200533  109  77  20  12  49  38  38  11  0  2  1  0  23  5.5  94  15    Terra-Bustamante et al, 200549  35  34  1  0  19  7  14  2  0  NR  1  NR  2  NR  31  4    Benifla et al, 200650  126  45  75  6  16  64  12  34  1  NR  18  4  13  5  80  26    Larysz et al, 200751  1  1  0  0  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  1  0    Liu et al, 200752  9  9  0  0  9  0  0  0  NR  NR  NR  NR  NR  NR  8  1    Maton et al, 200835  20  NR  NR  NR  1  8  8  3  2  0  NR  1  2  15  16  4    Kim et al, 200835  59  47  1  11  16  32  33  2  5  1  13  7  4  6.7  53  6    Kan et al, 200836  33  NR  NR  NR  19  NR  NR  NR  0  0  NR  NR  NR  5  28  5    de Koning et al, 200953  24  24  0  0  7  13  2  4  NR  NR  NR  NR  NR  NR  23  1    Lee et al, 200954  15  10  0  5  3  15  13  0  NR  NR  NR  NR  NR  NR  15  0    Hemb et al, (includes  58  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  9  46  12    Mathern et al, 1999), 201055                                    Lee et al, 201037  19  5  14  0  11  5  9  NR  0  NR  11  NR  12  15.7  17  2    Lopez et al, 201056  52  11  31  3  20  14  26  16  NR  NR  NR  NR  NR  NR  49  3    Ogiwara et al, 201057  18  0  1  18  0  18  NR  NR  NR  NR  NR  NR  NR  NR  18  0    Zupanc et al, 201058  19  19  0  0  10  NR  NR  NR  NR  NR  NR  NR  NR  NR  18  1    Cersosimo et al, 201159  38  32  6  0  38  0  0  NR  NR  NR  NR  NR  NR  NR  38  0    Dagar et al, 201160  43  NR  24  NR  26  NR  NR  NR  NR  NR  NR  NR  NR  NR  35  8    Garcia-Fernandez et al, 201161  13  2  0  11  0  13  2  0  NR  NR  NR  NR  3  NR  13  0    Jayalakshmi et al, 201162  53  NR  NR  NR  30  NR  NR  NR  NR  NR  NR  NR  NR  NR  42  9    Lopez-Gonzalez et al, 201238  130  6  106  18  70  33  54  13  0  2  2  1  4  7  93  37    Skirrow et al, 201263  42  42  0  0  26  16  0  0  NR  NR  NR  NR  NR  NR  36  6    Uliel-Sibony et al, 201164  41  0  12  41  0  41  0  0  NR  NR  NR  NR  2  NR  34  7    Kasasbeh et al, 201265  25  10  15  0  8  0  0  13  NR  NR  NR  NR  NR  NR  19  6    Dwivedi et al, 201766  14  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  14  0    This series (includes Clusmann  183  58  52  73  60  80  18  25  3  3  39  9  9  9.8  155  28    et al, 20041), 2018                                    Total  2089  841  403  243  617  672  276  258  17  8  113  28  79    1629  433    Total percent    56.6  27.1  16.3  29.5  32.1  13.2  12.3  1.9  1.2  14.4  3.7  10.1  9.4  79.0  21.0        Surgery  Pathology  Complications        Publication  Patients  ATL  AH  Lx  MTS  Tumor  Dysplasia  Other  Permanent neuro deficit (excl. vision)  Hematoma  visual field deficit  Infection  Reoperation  Overall complication rate (%)  Engel I/II  Engel III/IV  Comments  Davidson and Falconer, 19752  40  40  0  0  24  12  0  8  NR  NR  NR  NR  NR  NR  31  9    Green and Pootrakul, 19824  32  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  26  6    Vaernet et al, 19835  33  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  20  13    Rasmussen, 19833  99  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  59  40    Meyer et al, 19866  50  50  0  0  NR  6  NR  NR  1  0  20  2  NR  8  39  11    Rutledge et al, 198713  3  0  0  2  0  3  0  0  NR  NR  NR  NR  NR  NR  3  0  third case biopsy only of AA  Drake et al, 198714  16  16  0  0  8  12  NR  4  NR  NR  NR  NR  NR  NR  9  7    Harbord and Manson, 198715  16  16  0  0  NR  9  1  6  NR  NR  NR  NR  NR  NR  11  4    Adams et al, 199016  44  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  29  15    Mizrahi et al, 199017  8  8  0  0  3  0  0  5  NR  NR  NR  NR  NR  NR  3  5    Hopkins and Klug, 199118  11  10  0  1  1  5  1  4  2  NR  2  NR  NR  NR  8  3    Duchowny et al, 199219  16  16  0  0  1  4  1  10  0  NR  NR  2  NR  NR  11  5    Adelson et al, 199220  33  33  0  0  5  16  9  13  NR  NR  NR  NR  NR  6  23  10    Jay et al, 199321  20  NR  NR  NR  12  10  3  3  NR  NR  NR  NR  NR  NR  12  8    Goldstein et al, 199639  33  33  0  0  6  8  NR  23  NR  NR  NR  NR  NR  NR  15  18    Bizzi et al, 199740  14  14  0  0  2  3  2  12  0  0  1  0  NR  21.4  11  3    Blume et al, 199723  14  14  0  0  7  8  NR  5  NR  NR  NR  NR  NR  NR  13  1    Gilliam et al, 199722  18  NR  NR  NR  2  10  6  3  0  NR  NR  NR  NR  NR  13  5    Salanova et al, 199824  3  3  0  0  3  0  0  0  NR  NR  NR  NR  NR  NR  2  1    Szabo et al, 199825  14  14  0  0  4  7  2  1  NR  NR  NR  NR  NR  NR  13  1    Williams et al, 199826  9  9  0  0  5  1  0  3  NR  NR  NR  NR  NR  NR  8  1    Gashlan et al, 199941  39  NR  NR  NR  NR  11  NR  NR  NR  NR  NR  NR  NR  NR  26  13    Khajavi et al, 199942  23  23  0  0  1  23  0  NR  NR  NR  NR  NR  NR  NR  19  4    Munari et al, 199927  21  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  2.1  21  0    Iannelli et al, 200028  32  0  0  32  0  32  0  0  NR  NR  NR  NR  NR  NR  30  2    Robinson et al, 200029  21  0  22  0  21  NR  NR  NR  2  0  1  1  NR  13.6  15  6    Paolicchi et al, 200030  29  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  19  10    Mohamed et al, 200131  34  34  0  0  15  NR  8  NR  NR  NR  NR  NR  NR  NR  26  7    Sotero de Menezes et al, 200143  15  11  11  4  10  4  1  1  1  NR  NR  NR  3  NR  7  8    Sinclair et al, 200344  42  42  0  0  13  17  4  12  NR  NR  NR  NR  NR  4  33  9    Cataltepe et al, 200545  29  23  12  6  2  29  0  0  0  0  4  1  2  17.2  24  5    Freitag et al, 200546  16  NR  NR  NR  1  13  2  0  NR  NR  NR  NR  NR  NR  16  0    Korkman et al, 200547  23  NR  NR  NR  NR  9  1  16  NR  NR  NR  NR  NR  NR  21  2    McLellan et al, 200548  60  NR  NR  NR  33  23  6  6  NR  NR  NR  NR  NR  NR  37  20    Mittal et al, 200533  109  77  20  12  49  38  38  11  0  2  1  0  23  5.5  94  15    Terra-Bustamante et al, 200549  35  34  1  0  19  7  14  2  0  NR  1  NR  2  NR  31  4    Benifla et al, 200650  126  45  75  6  16  64  12  34  1  NR  18  4  13  5  80  26    Larysz et al, 200751  1  1  0  0  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  1  0    Liu et al, 200752  9  9  0  0  9  0  0  0  NR  NR  NR  NR  NR  NR  8  1    Maton et al, 200835  20  NR  NR  NR  1  8  8  3  2  0  NR  1  2  15  16  4    Kim et al, 200835  59  47  1  11  16  32  33  2  5  1  13  7  4  6.7  53  6    Kan et al, 200836  33  NR  NR  NR  19  NR  NR  NR  0  0  NR  NR  NR  5  28  5    de Koning et al, 200953  24  24  0  0  7  13  2  4  NR  NR  NR  NR  NR  NR  23  1    Lee et al, 200954  15  10  0  5  3  15  13  0  NR  NR  NR  NR  NR  NR  15  0    Hemb et al, (includes  58  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  9  46  12    Mathern et al, 1999), 201055                                    Lee et al, 201037  19  5  14  0  11  5  9  NR  0  NR  11  NR  12  15.7  17  2    Lopez et al, 201056  52  11  31  3  20  14  26  16  NR  NR  NR  NR  NR  NR  49  3    Ogiwara et al, 201057  18  0  1  18  0  18  NR  NR  NR  NR  NR  NR  NR  NR  18  0    Zupanc et al, 201058  19  19  0  0  10  NR  NR  NR  NR  NR  NR  NR  NR  NR  18  1    Cersosimo et al, 201159  38  32  6  0  38  0  0  NR  NR  NR  NR  NR  NR  NR  38  0    Dagar et al, 201160  43  NR  24  NR  26  NR  NR  NR  NR  NR  NR  NR  NR  NR  35  8    Garcia-Fernandez et al, 201161  13  2  0  11  0  13  2  0  NR  NR  NR  NR  3  NR  13  0    Jayalakshmi et al, 201162  53  NR  NR  NR  30  NR  NR  NR  NR  NR  NR  NR  NR  NR  42  9    Lopez-Gonzalez et al, 201238  130  6  106  18  70  33  54  13  0  2  2  1  4  7  93  37    Skirrow et al, 201263  42  42  0  0  26  16  0  0  NR  NR  NR  NR  NR  NR  36  6    Uliel-Sibony et al, 201164  41  0  12  41  0  41  0  0  NR  NR  NR  NR  2  NR  34  7    Kasasbeh et al, 201265  25  10  15  0  8  0  0  13  NR  NR  NR  NR  NR  NR  19  6    Dwivedi et al, 201766  14  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  14  0    This series (includes Clusmann  183  58  52  73  60  80  18  25  3  3  39  9  9  9.8  155  28    et al, 20041), 2018                                    Total  2089  841  403  243  617  672  276  258  17  8  113  28  79    1629  433    Total percent    56.6  27.1  16.3  29.5  32.1  13.2  12.3  1.9  1.2  14.4  3.7  10.1  9.4  79.0  21.0    View Large TABLE 1. Pediatric Temporal Lobe Epilepsy Series Reported in the Literature     Surgery  Pathology  Complications        Publication  Patients  ATL  AH  Lx  MTS  Tumor  Dysplasia  Other  Permanent neuro deficit (excl. vision)  Hematoma  visual field deficit  Infection  Reoperation  Overall complication rate (%)  Engel I/II  Engel III/IV  Comments  Davidson and Falconer, 19752  40  40  0  0  24  12  0  8  NR  NR  NR  NR  NR  NR  31  9    Green and Pootrakul, 19824  32  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  26  6    Vaernet et al, 19835  33  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  20  13    Rasmussen, 19833  99  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  59  40    Meyer et al, 19866  50  50  0  0  NR  6  NR  NR  1  0  20  2  NR  8  39  11    Rutledge et al, 198713  3  0  0  2  0  3  0  0  NR  NR  NR  NR  NR  NR  3  0  third case biopsy only of AA  Drake et al, 198714  16  16  0  0  8  12  NR  4  NR  NR  NR  NR  NR  NR  9  7    Harbord and Manson, 198715  16  16  0  0  NR  9  1  6  NR  NR  NR  NR  NR  NR  11  4    Adams et al, 199016  44  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  29  15    Mizrahi et al, 199017  8  8  0  0  3  0  0  5  NR  NR  NR  NR  NR  NR  3  5    Hopkins and Klug, 199118  11  10  0  1  1  5  1  4  2  NR  2  NR  NR  NR  8  3    Duchowny et al, 199219  16  16  0  0  1  4  1  10  0  NR  NR  2  NR  NR  11  5    Adelson et al, 199220  33  33  0  0  5  16  9  13  NR  NR  NR  NR  NR  6  23  10    Jay et al, 199321  20  NR  NR  NR  12  10  3  3  NR  NR  NR  NR  NR  NR  12  8    Goldstein et al, 199639  33  33  0  0  6  8  NR  23  NR  NR  NR  NR  NR  NR  15  18    Bizzi et al, 199740  14  14  0  0  2  3  2  12  0  0  1  0  NR  21.4  11  3    Blume et al, 199723  14  14  0  0  7  8  NR  5  NR  NR  NR  NR  NR  NR  13  1    Gilliam et al, 199722  18  NR  NR  NR  2  10  6  3  0  NR  NR  NR  NR  NR  13  5    Salanova et al, 199824  3  3  0  0  3  0  0  0  NR  NR  NR  NR  NR  NR  2  1    Szabo et al, 199825  14  14  0  0  4  7  2  1  NR  NR  NR  NR  NR  NR  13  1    Williams et al, 199826  9  9  0  0  5  1  0  3  NR  NR  NR  NR  NR  NR  8  1    Gashlan et al, 199941  39  NR  NR  NR  NR  11  NR  NR  NR  NR  NR  NR  NR  NR  26  13    Khajavi et al, 199942  23  23  0  0  1  23  0  NR  NR  NR  NR  NR  NR  NR  19  4    Munari et al, 199927  21  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  2.1  21  0    Iannelli et al, 200028  32  0  0  32  0  32  0  0  NR  NR  NR  NR  NR  NR  30  2    Robinson et al, 200029  21  0  22  0  21  NR  NR  NR  2  0  1  1  NR  13.6  15  6    Paolicchi et al, 200030  29  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  19  10    Mohamed et al, 200131  34  34  0  0  15  NR  8  NR  NR  NR  NR  NR  NR  NR  26  7    Sotero de Menezes et al, 200143  15  11  11  4  10  4  1  1  1  NR  NR  NR  3  NR  7  8    Sinclair et al, 200344  42  42  0  0  13  17  4  12  NR  NR  NR  NR  NR  4  33  9    Cataltepe et al, 200545  29  23  12  6  2  29  0  0  0  0  4  1  2  17.2  24  5    Freitag et al, 200546  16  NR  NR  NR  1  13  2  0  NR  NR  NR  NR  NR  NR  16  0    Korkman et al, 200547  23  NR  NR  NR  NR  9  1  16  NR  NR  NR  NR  NR  NR  21  2    McLellan et al, 200548  60  NR  NR  NR  33  23  6  6  NR  NR  NR  NR  NR  NR  37  20    Mittal et al, 200533  109  77  20  12  49  38  38  11  0  2  1  0  23  5.5  94  15    Terra-Bustamante et al, 200549  35  34  1  0  19  7  14  2  0  NR  1  NR  2  NR  31  4    Benifla et al, 200650  126  45  75  6  16  64  12  34  1  NR  18  4  13  5  80  26    Larysz et al, 200751  1  1  0  0  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  1  0    Liu et al, 200752  9  9  0  0  9  0  0  0  NR  NR  NR  NR  NR  NR  8  1    Maton et al, 200835  20  NR  NR  NR  1  8  8  3  2  0  NR  1  2  15  16  4    Kim et al, 200835  59  47  1  11  16  32  33  2  5  1  13  7  4  6.7  53  6    Kan et al, 200836  33  NR  NR  NR  19  NR  NR  NR  0  0  NR  NR  NR  5  28  5    de Koning et al, 200953  24  24  0  0  7  13  2  4  NR  NR  NR  NR  NR  NR  23  1    Lee et al, 200954  15  10  0  5  3  15  13  0  NR  NR  NR  NR  NR  NR  15  0    Hemb et al, (includes  58  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  9  46  12    Mathern et al, 1999), 201055                                    Lee et al, 201037  19  5  14  0  11  5  9  NR  0  NR  11  NR  12  15.7  17  2    Lopez et al, 201056  52  11  31  3  20  14  26  16  NR  NR  NR  NR  NR  NR  49  3    Ogiwara et al, 201057  18  0  1  18  0  18  NR  NR  NR  NR  NR  NR  NR  NR  18  0    Zupanc et al, 201058  19  19  0  0  10  NR  NR  NR  NR  NR  NR  NR  NR  NR  18  1    Cersosimo et al, 201159  38  32  6  0  38  0  0  NR  NR  NR  NR  NR  NR  NR  38  0    Dagar et al, 201160  43  NR  24  NR  26  NR  NR  NR  NR  NR  NR  NR  NR  NR  35  8    Garcia-Fernandez et al, 201161  13  2  0  11  0  13  2  0  NR  NR  NR  NR  3  NR  13  0    Jayalakshmi et al, 201162  53  NR  NR  NR  30  NR  NR  NR  NR  NR  NR  NR  NR  NR  42  9    Lopez-Gonzalez et al, 201238  130  6  106  18  70  33  54  13  0  2  2  1  4  7  93  37    Skirrow et al, 201263  42  42  0  0  26  16  0  0  NR  NR  NR  NR  NR  NR  36  6    Uliel-Sibony et al, 201164  41  0  12  41  0  41  0  0  NR  NR  NR  NR  2  NR  34  7    Kasasbeh et al, 201265  25  10  15  0  8  0  0  13  NR  NR  NR  NR  NR  NR  19  6    Dwivedi et al, 201766  14  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  14  0    This series (includes Clusmann  183  58  52  73  60  80  18  25  3  3  39  9  9  9.8  155  28    et al, 20041), 2018                                    Total  2089  841  403  243  617  672  276  258  17  8  113  28  79    1629  433    Total percent    56.6  27.1  16.3  29.5  32.1  13.2  12.3  1.9  1.2  14.4  3.7  10.1  9.4  79.0  21.0        Surgery  Pathology  Complications        Publication  Patients  ATL  AH  Lx  MTS  Tumor  Dysplasia  Other  Permanent neuro deficit (excl. vision)  Hematoma  visual field deficit  Infection  Reoperation  Overall complication rate (%)  Engel I/II  Engel III/IV  Comments  Davidson and Falconer, 19752  40  40  0  0  24  12  0  8  NR  NR  NR  NR  NR  NR  31  9    Green and Pootrakul, 19824  32  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  26  6    Vaernet et al, 19835  33  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  20  13    Rasmussen, 19833  99  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  59  40    Meyer et al, 19866  50  50  0  0  NR  6  NR  NR  1  0  20  2  NR  8  39  11    Rutledge et al, 198713  3  0  0  2  0  3  0  0  NR  NR  NR  NR  NR  NR  3  0  third case biopsy only of AA  Drake et al, 198714  16  16  0  0  8  12  NR  4  NR  NR  NR  NR  NR  NR  9  7    Harbord and Manson, 198715  16  16  0  0  NR  9  1  6  NR  NR  NR  NR  NR  NR  11  4    Adams et al, 199016  44  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  29  15    Mizrahi et al, 199017  8  8  0  0  3  0  0  5  NR  NR  NR  NR  NR  NR  3  5    Hopkins and Klug, 199118  11  10  0  1  1  5  1  4  2  NR  2  NR  NR  NR  8  3    Duchowny et al, 199219  16  16  0  0  1  4  1  10  0  NR  NR  2  NR  NR  11  5    Adelson et al, 199220  33  33  0  0  5  16  9  13  NR  NR  NR  NR  NR  6  23  10    Jay et al, 199321  20  NR  NR  NR  12  10  3  3  NR  NR  NR  NR  NR  NR  12  8    Goldstein et al, 199639  33  33  0  0  6  8  NR  23  NR  NR  NR  NR  NR  NR  15  18    Bizzi et al, 199740  14  14  0  0  2  3  2  12  0  0  1  0  NR  21.4  11  3    Blume et al, 199723  14  14  0  0  7  8  NR  5  NR  NR  NR  NR  NR  NR  13  1    Gilliam et al, 199722  18  NR  NR  NR  2  10  6  3  0  NR  NR  NR  NR  NR  13  5    Salanova et al, 199824  3  3  0  0  3  0  0  0  NR  NR  NR  NR  NR  NR  2  1    Szabo et al, 199825  14  14  0  0  4  7  2  1  NR  NR  NR  NR  NR  NR  13  1    Williams et al, 199826  9  9  0  0  5  1  0  3  NR  NR  NR  NR  NR  NR  8  1    Gashlan et al, 199941  39  NR  NR  NR  NR  11  NR  NR  NR  NR  NR  NR  NR  NR  26  13    Khajavi et al, 199942  23  23  0  0  1  23  0  NR  NR  NR  NR  NR  NR  NR  19  4    Munari et al, 199927  21  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  2.1  21  0    Iannelli et al, 200028  32  0  0  32  0  32  0  0  NR  NR  NR  NR  NR  NR  30  2    Robinson et al, 200029  21  0  22  0  21  NR  NR  NR  2  0  1  1  NR  13.6  15  6    Paolicchi et al, 200030  29  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  19  10    Mohamed et al, 200131  34  34  0  0  15  NR  8  NR  NR  NR  NR  NR  NR  NR  26  7    Sotero de Menezes et al, 200143  15  11  11  4  10  4  1  1  1  NR  NR  NR  3  NR  7  8    Sinclair et al, 200344  42  42  0  0  13  17  4  12  NR  NR  NR  NR  NR  4  33  9    Cataltepe et al, 200545  29  23  12  6  2  29  0  0  0  0  4  1  2  17.2  24  5    Freitag et al, 200546  16  NR  NR  NR  1  13  2  0  NR  NR  NR  NR  NR  NR  16  0    Korkman et al, 200547  23  NR  NR  NR  NR  9  1  16  NR  NR  NR  NR  NR  NR  21  2    McLellan et al, 200548  60  NR  NR  NR  33  23  6  6  NR  NR  NR  NR  NR  NR  37  20    Mittal et al, 200533  109  77  20  12  49  38  38  11  0  2  1  0  23  5.5  94  15    Terra-Bustamante et al, 200549  35  34  1  0  19  7  14  2  0  NR  1  NR  2  NR  31  4    Benifla et al, 200650  126  45  75  6  16  64  12  34  1  NR  18  4  13  5  80  26    Larysz et al, 200751  1  1  0  0  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  1  0    Liu et al, 200752  9  9  0  0  9  0  0  0  NR  NR  NR  NR  NR  NR  8  1    Maton et al, 200835  20  NR  NR  NR  1  8  8  3  2  0  NR  1  2  15  16  4    Kim et al, 200835  59  47  1  11  16  32  33  2  5  1  13  7  4  6.7  53  6    Kan et al, 200836  33  NR  NR  NR  19  NR  NR  NR  0  0  NR  NR  NR  5  28  5    de Koning et al, 200953  24  24  0  0  7  13  2  4  NR  NR  NR  NR  NR  NR  23  1    Lee et al, 200954  15  10  0  5  3  15  13  0  NR  NR  NR  NR  NR  NR  15  0    Hemb et al, (includes  58  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  9  46  12    Mathern et al, 1999), 201055                                    Lee et al, 201037  19  5  14  0  11  5  9  NR  0  NR  11  NR  12  15.7  17  2    Lopez et al, 201056  52  11  31  3  20  14  26  16  NR  NR  NR  NR  NR  NR  49  3    Ogiwara et al, 201057  18  0  1  18  0  18  NR  NR  NR  NR  NR  NR  NR  NR  18  0    Zupanc et al, 201058  19  19  0  0  10  NR  NR  NR  NR  NR  NR  NR  NR  NR  18  1    Cersosimo et al, 201159  38  32  6  0  38  0  0  NR  NR  NR  NR  NR  NR  NR  38  0    Dagar et al, 201160  43  NR  24  NR  26  NR  NR  NR  NR  NR  NR  NR  NR  NR  35  8    Garcia-Fernandez et al, 201161  13  2  0  11  0  13  2  0  NR  NR  NR  NR  3  NR  13  0    Jayalakshmi et al, 201162  53  NR  NR  NR  30  NR  NR  NR  NR  NR  NR  NR  NR  NR  42  9    Lopez-Gonzalez et al, 201238  130  6  106  18  70  33  54  13  0  2  2  1  4  7  93  37    Skirrow et al, 201263  42  42  0  0  26  16  0  0  NR  NR  NR  NR  NR  NR  36  6    Uliel-Sibony et al, 201164  41  0  12  41  0  41  0  0  NR  NR  NR  NR  2  NR  34  7    Kasasbeh et al, 201265  25  10  15  0  8  0  0  13  NR  NR  NR  NR  NR  NR  19  6    Dwivedi et al, 201766  14  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  NR  14  0    This series (includes Clusmann  183  58  52  73  60  80  18  25  3  3  39  9  9  9.8  155  28    et al, 20041), 2018                                    Total  2089  841  403  243  617  672  276  258  17  8  113  28  79    1629  433    Total percent    56.6  27.1  16.3  29.5  32.1  13.2  12.3  1.9  1.2  14.4  3.7  10.1  9.4  79.0  21.0    View Large METHODS This retrospective study was approved with a waiver of consent by an ethical standards committee on human experimentation at our university. One hundred ninety-seven consecutive pediatric patients (age ≤ 18) with TLE without extratemporal disease who underwent surgical treatment between 1988 and 2012 were retrospectively reviewed. Twelve patients had less than 12 mo follow-up, and 2 patients had only undergone biopsies for diagnosis. The remaining 183 patients were included for analysis. All patients had experienced well-documented, medically intractable TLE for more than 1 yr with failure of at least 2 first-line antiepileptic drugs prior to referral for preoperative evaluation. Demographic and clinical characteristics are presented in Table 2. TABLE 2. Patient Demographic Characteristics and History   Number  Percent  Male  88  48.1  Female  95  51.9  Age at operation  12.5 (mean)  13.6 (median)  Seizure onset  5.9 (mean)  5 (median)  With neoplasia  80  43.5  With AHS or dysplasia  77  42.1  History     Febrile seizures  30  19.7   Trauma  4  2.4   Infection  11  6.5   Asphyxia  2  1.2   Previous operation for tumor  8  4.7   Familial seizures  9  5.8   Neurological development      Normal  130  77.4    Intellectual disability  38  22.6   Seizure type      Auras  73  57.5    Simple partial  54  29.8    Complex partial  165  91.2    Generalized seizures  34  18.8    Other  4  2.2   Number of seizure types      1  110  60.8    2  60  33.1    3  11  6.1  Preop seizure freq (per mo)      ≤4  37  23.0    5-10  28  17.4    11-30  45  28.0    >30  51  31.7    Number  Percent  Male  88  48.1  Female  95  51.9  Age at operation  12.5 (mean)  13.6 (median)  Seizure onset  5.9 (mean)  5 (median)  With neoplasia  80  43.5  With AHS or dysplasia  77  42.1  History     Febrile seizures  30  19.7   Trauma  4  2.4   Infection  11  6.5   Asphyxia  2  1.2   Previous operation for tumor  8  4.7   Familial seizures  9  5.8   Neurological development      Normal  130  77.4    Intellectual disability  38  22.6   Seizure type      Auras  73  57.5    Simple partial  54  29.8    Complex partial  165  91.2    Generalized seizures  34  18.8    Other  4  2.2   Number of seizure types      1  110  60.8    2  60  33.1    3  11  6.1  Preop seizure freq (per mo)      ≤4  37  23.0    5-10  28  17.4    11-30  45  28.0    >30  51  31.7  preop = preoperative; mo = month; freq = frequency. View Large TABLE 2. Patient Demographic Characteristics and History   Number  Percent  Male  88  48.1  Female  95  51.9  Age at operation  12.5 (mean)  13.6 (median)  Seizure onset  5.9 (mean)  5 (median)  With neoplasia  80  43.5  With AHS or dysplasia  77  42.1  History     Febrile seizures  30  19.7   Trauma  4  2.4   Infection  11  6.5   Asphyxia  2  1.2   Previous operation for tumor  8  4.7   Familial seizures  9  5.8   Neurological development      Normal  130  77.4    Intellectual disability  38  22.6   Seizure type      Auras  73  57.5    Simple partial  54  29.8    Complex partial  165  91.2    Generalized seizures  34  18.8    Other  4  2.2   Number of seizure types      1  110  60.8    2  60  33.1    3  11  6.1  Preop seizure freq (per mo)      ≤4  37  23.0    5-10  28  17.4    11-30  45  28.0    >30  51  31.7    Number  Percent  Male  88  48.1  Female  95  51.9  Age at operation  12.5 (mean)  13.6 (median)  Seizure onset  5.9 (mean)  5 (median)  With neoplasia  80  43.5  With AHS or dysplasia  77  42.1  History     Febrile seizures  30  19.7   Trauma  4  2.4   Infection  11  6.5   Asphyxia  2  1.2   Previous operation for tumor  8  4.7   Familial seizures  9  5.8   Neurological development      Normal  130  77.4    Intellectual disability  38  22.6   Seizure type      Auras  73  57.5    Simple partial  54  29.8    Complex partial  165  91.2    Generalized seizures  34  18.8    Other  4  2.2   Number of seizure types      1  110  60.8    2  60  33.1    3  11  6.1  Preop seizure freq (per mo)      ≤4  37  23.0    5-10  28  17.4    11-30  45  28.0    >30  51  31.7  preop = preoperative; mo = month; freq = frequency. View Large Preoperative Evaluation Details of the protocol for preoperative evaluation and decision-making criteria have been previously published.69,70 Briefly, continuous scalp video-electroencephalogram (EEG) monitoring for assessment of focal ictal and interictal activity was standard for all patients. Invasive diagnostic studies were performed in 49 patients. The main reason for invasive monitoring was incongruence of video EEG and imaging findings, no lesion on imaging, or a suspected overlap of the ictal onset zone with eloquent cortex. Neuropsychological Evaluation Whenever possible, patients underwent a thorough neuropsychological examination as described in our previous report on pediatric TLE patients.1 In order to allow the evaluation across the above domains when different tools had been used, we used a 5 step rating of: 0, strongly impaired; 1, impaired; 2, borderline; 3, average; 4, above average.1,10 One step represents approximately 1 standard deviation and a change of 1 step over time represents a statistically reliable change.10 Neuropsychological impairment refers to this cognitive deficit noted on neuropsychological testing that may or may not be independent of “intellectual disability,” a “disorder with onset during the developmental period that includes both intellectual and adaptive functioning deficits in conceptual, social, and practical domains.”71 Surgical Procedures Prior to 1994, anterior temporal lobectomy (ATL) with removal of mesiotemporal structures was our standard procedure for mesial TLE, with resection extending to 4.0 to 5.0 cm from the temporal pole for nondominant lesions and 3.5 to 4.0 cm in the dominant hemisphere. Even in this era, patients with lateral lesions without clinical or electrophysiological mesiotemporal features underwent lateral lesionectomies without ATL. Temporodorsal and basal lesions underwent temporodorsal lesionectomy with the removal of hippocampus and amygdala in selected cases. Beginning in 1994, resections became more limited, and were often facilitated by the improved demonstration of epileptogenic lesions on MRI or their localization with invasive or noninvasive EEG recordings as previously described.1 Transsylvian amygdalohippocampectomy (AH) largely replaced ATL for treating mesial TLE, although ATL was continued in selected cases due to early results suggesting worse results, especially for left-sided lesions.1,72 Outcome Data Seizure outcome and neurological status were obtained at last follow-up. Patients were assigned to 1 of 4 outcome classes as described by Engel et al,7 based on the patient's last available postoperative seizure status. Class I and II were grouped as satisfactory seizure outcome and class III and IV were grouped as unsatisfactory seizure outcome. Statistical Analysis Factors were analyzed with respect to their effect on seizure outcome. For unifactorial analysis: Student's t-test was used for comparison of continuous variables if distribution was normal; Wilcoxon's test was used if it was not. χ2 test or Fisher's exact test were used for dichotomous discrete variables, with significance set at P < .05 (2-sided), and a trend toward significance set at P < .10. A multivariate logistic regression analysis with Engel class 1 outcome as a dependent variable was performed to investigate the following variables (side, invasive diagnostics, histology grouped as long-term epilepsy associated tumor vs other and type of surgery grouped as lesionectomy without hippocampectomy vs other). All statistical analyses were performed using commercially available software JMP (JMP®, Version 12. SAS Institute Inc, Cary, North Carolina). RESULTS Seizure Outcomes Mean follow-up was 42 mo (range 12-152 mo); 64 patients had follow-up between 1 and 2 yr, and 119 patients had greater than 2 yr of follow-up. One hundred fifty-five patients had good seizure outcomes (Engel I/II; 84.7%) and 28 patients had poor seizure outcomes (Engel III/IV; 15.3%; see Table 3). One hundred forty-four patients were Engel I (78.7%). Only 10 patients did not have worthwhile improvement (Engel class IV; 5.4%). In terms of durability of surgical outcomes, there were 64 patients with 1 to 2 yr of follow-up, 64 patients with greater than 2 to 4 yr of follow-up, and 55 patients with greater than 4 yr of follow-up. Of those patients with 1 to 2 yr of follow-up, 59 patients achieved satisfactory seizure outcomes (92.2%). Of patients with 2 to 4 yr of follow-up, 52 patients achieved satisfactory seizure outcomes (81.25%). Of patients with greater than 4 yr of follow-up, 44 achieved satisfactory seizure outcomes (80%). Most of the difference between cohorts appears to be in a decrease in Engel class II patients and an increase in class III and IV patients in later cohorts, although these changes were not significant (Figure, P = .1003). There is actually only a slight drop in Engel class I patients with greater follow-up with no statistical significance between groups (81.5% vs 78.1% vs 76.4% for 1-2, 2-4, and greater than 4 yr follow-up, respectively, P = .7770; Figure). FIGURE. View largeDownload slide Engel class by length of follow-up. Percentage of patients in each Engel class grouped by length of follow-up. FIGURE. View largeDownload slide Engel class by length of follow-up. Percentage of patients in each Engel class grouped by length of follow-up. TABLE 3. Patient Characteristics and Seizure Outcome     Percent  Engel class I/II  percent  Engel class III/IV  Percent  P value    All patients  184  100  155  84.7  28  15.3       Male  88  48.1  75  85.2  13  14.8  1.0000     Female  95  51.9  80  84.2  15  15.8      Clinical findings     Febrile seizures  30  19.7  27  90  3  10  0.7678     No febrile seizures  122  80.3  104  85.2  18  14.8       Generalized seizures  34  18.8  26  76.5  8  23.5  0.1780     Never generalize  147  81.2  128  87.1  19  12.9       No aura  54  42.5  46  85.2  8  14.8  1.0000     Auras  73  57.5  62  84.9  11  15.1       Retardation  38  22.6  28  73.7  10  26.3  0.0364     No retardation  130  77.4  115  88.5  15  11.5      MRI findings     No structural abnormality  8  4.5  8  100  0  0  0.6064     Nonspecific lesion  22  12.4  16  72.7  6  27.3  0.2191     Neoplasia                combined Fisher exact   Total  68  38.2  61  89.7  7  10.3  0.4127  0.0150   Gangliogliioma or DNET  43  24.2  38  88.4  5  11.6  0.6378     Other tumor  25  14.0  23  92  2  8  0.5430     MTS  54  30.3  48  88.9  6  11.1  0.5143     Dysplasia  18  10.1  11  61.1  7  38.9  0.0202     Other (specific lesion)  8  4.5  7  87.5  1  12.5  1.0000     MRI sensitivity and specificity     Correct and precise prediction  134  75.2  116  86.6  18  13.4  0.3316     Incorrect or imprecise prediction  44  24.7  35  79.5  9  20.5      Histologic diagnosis     Gangliogliioma or DNET  65  35.3  56  86.2  9  13.8  0.8423  0.0422   Other tumor  16  10.6  16  100  0  0  0.1346     MTS  59  32.2  52  88.1  7  11.9  0.6709     Dysplasia  19  11.5  15  78.9  4  21.1  0.5117     Other  24  9.0  16  66.7  8  33.3  0.0421     Intraoperative navigation  23  29.1  19  82.6  4  17.4  1.0000     No navigation  56  70.9  46  82.1  10  17.9       Invasive diagnostic study  49  28.2  38  77.6  11  22.4  0.0990     No invasive diagnostic study  125  71.8  110  88  15  12       New immediate postoperative deficit  33  19.0  26  78.8  7  21.2  0.4297     No new immediate postop deficit  141  81.0  120  85.1  21  14.9       Number of seizure types              0.4201      1  110  61.1  92  83.6  18  16.4        2  59  32.8  53  89.9  6  10.1        3  11  6.1  8  72.7  3  27.3       Preop seizure frequency (per mo)              0.7642      <4  37  22.8  31  83.8  6  16.2        5-10  28  17.3  24  85.7  4  14.3        11-30  45  27.8  39  86.7  6  13.3        >30  51  32.1  42  82.4  9  17.6        Age ≥ 12  104  56.8  90  86.5  14  13.5  0.5347      Age < 12  79  43.2  65  82.3  14  17.7          Percent  Engel class I/II  percent  Engel class III/IV  Percent  P value    All patients  184  100  155  84.7  28  15.3       Male  88  48.1  75  85.2  13  14.8  1.0000     Female  95  51.9  80  84.2  15  15.8      Clinical findings     Febrile seizures  30  19.7  27  90  3  10  0.7678     No febrile seizures  122  80.3  104  85.2  18  14.8       Generalized seizures  34  18.8  26  76.5  8  23.5  0.1780     Never generalize  147  81.2  128  87.1  19  12.9       No aura  54  42.5  46  85.2  8  14.8  1.0000     Auras  73  57.5  62  84.9  11  15.1       Retardation  38  22.6  28  73.7  10  26.3  0.0364     No retardation  130  77.4  115  88.5  15  11.5      MRI findings     No structural abnormality  8  4.5  8  100  0  0  0.6064     Nonspecific lesion  22  12.4  16  72.7  6  27.3  0.2191     Neoplasia                combined Fisher exact   Total  68  38.2  61  89.7  7  10.3  0.4127  0.0150   Gangliogliioma or DNET  43  24.2  38  88.4  5  11.6  0.6378     Other tumor  25  14.0  23  92  2  8  0.5430     MTS  54  30.3  48  88.9  6  11.1  0.5143     Dysplasia  18  10.1  11  61.1  7  38.9  0.0202     Other (specific lesion)  8  4.5  7  87.5  1  12.5  1.0000     MRI sensitivity and specificity     Correct and precise prediction  134  75.2  116  86.6  18  13.4  0.3316     Incorrect or imprecise prediction  44  24.7  35  79.5  9  20.5      Histologic diagnosis     Gangliogliioma or DNET  65  35.3  56  86.2  9  13.8  0.8423  0.0422   Other tumor  16  10.6  16  100  0  0  0.1346     MTS  59  32.2  52  88.1  7  11.9  0.6709     Dysplasia  19  11.5  15  78.9  4  21.1  0.5117     Other  24  9.0  16  66.7  8  33.3  0.0421     Intraoperative navigation  23  29.1  19  82.6  4  17.4  1.0000     No navigation  56  70.9  46  82.1  10  17.9       Invasive diagnostic study  49  28.2  38  77.6  11  22.4  0.0990     No invasive diagnostic study  125  71.8  110  88  15  12       New immediate postoperative deficit  33  19.0  26  78.8  7  21.2  0.4297     No new immediate postop deficit  141  81.0  120  85.1  21  14.9       Number of seizure types              0.4201      1  110  61.1  92  83.6  18  16.4        2  59  32.8  53  89.9  6  10.1        3  11  6.1  8  72.7  3  27.3       Preop seizure frequency (per mo)              0.7642      <4  37  22.8  31  83.8  6  16.2        5-10  28  17.3  24  85.7  4  14.3        11-30  45  27.8  39  86.7  6  13.3        >30  51  32.1  42  82.4  9  17.6        Age ≥ 12  104  56.8  90  86.5  14  13.5  0.5347      Age < 12  79  43.2  65  82.3  14  17.7      DNET = dysembryoplastic neuroepithelial tumor; MTS = mesial temporal sclerosis; preop = preoperative; postop = postoperative; mo = month. View Large TABLE 3. Patient Characteristics and Seizure Outcome     Percent  Engel class I/II  percent  Engel class III/IV  Percent  P value    All patients  184  100  155  84.7  28  15.3       Male  88  48.1  75  85.2  13  14.8  1.0000     Female  95  51.9  80  84.2  15  15.8      Clinical findings     Febrile seizures  30  19.7  27  90  3  10  0.7678     No febrile seizures  122  80.3  104  85.2  18  14.8       Generalized seizures  34  18.8  26  76.5  8  23.5  0.1780     Never generalize  147  81.2  128  87.1  19  12.9       No aura  54  42.5  46  85.2  8  14.8  1.0000     Auras  73  57.5  62  84.9  11  15.1       Retardation  38  22.6  28  73.7  10  26.3  0.0364     No retardation  130  77.4  115  88.5  15  11.5      MRI findings     No structural abnormality  8  4.5  8  100  0  0  0.6064     Nonspecific lesion  22  12.4  16  72.7  6  27.3  0.2191     Neoplasia                combined Fisher exact   Total  68  38.2  61  89.7  7  10.3  0.4127  0.0150   Gangliogliioma or DNET  43  24.2  38  88.4  5  11.6  0.6378     Other tumor  25  14.0  23  92  2  8  0.5430     MTS  54  30.3  48  88.9  6  11.1  0.5143     Dysplasia  18  10.1  11  61.1  7  38.9  0.0202     Other (specific lesion)  8  4.5  7  87.5  1  12.5  1.0000     MRI sensitivity and specificity     Correct and precise prediction  134  75.2  116  86.6  18  13.4  0.3316     Incorrect or imprecise prediction  44  24.7  35  79.5  9  20.5      Histologic diagnosis     Gangliogliioma or DNET  65  35.3  56  86.2  9  13.8  0.8423  0.0422   Other tumor  16  10.6  16  100  0  0  0.1346     MTS  59  32.2  52  88.1  7  11.9  0.6709     Dysplasia  19  11.5  15  78.9  4  21.1  0.5117     Other  24  9.0  16  66.7  8  33.3  0.0421     Intraoperative navigation  23  29.1  19  82.6  4  17.4  1.0000     No navigation  56  70.9  46  82.1  10  17.9       Invasive diagnostic study  49  28.2  38  77.6  11  22.4  0.0990     No invasive diagnostic study  125  71.8  110  88  15  12       New immediate postoperative deficit  33  19.0  26  78.8  7  21.2  0.4297     No new immediate postop deficit  141  81.0  120  85.1  21  14.9       Number of seizure types              0.4201      1  110  61.1  92  83.6  18  16.4        2  59  32.8  53  89.9  6  10.1        3  11  6.1  8  72.7  3  27.3       Preop seizure frequency (per mo)              0.7642      <4  37  22.8  31  83.8  6  16.2        5-10  28  17.3  24  85.7  4  14.3        11-30  45  27.8  39  86.7  6  13.3        >30  51  32.1  42  82.4  9  17.6        Age ≥ 12  104  56.8  90  86.5  14  13.5  0.5347      Age < 12  79  43.2  65  82.3  14  17.7          Percent  Engel class I/II  percent  Engel class III/IV  Percent  P value    All patients  184  100  155  84.7  28  15.3       Male  88  48.1  75  85.2  13  14.8  1.0000     Female  95  51.9  80  84.2  15  15.8      Clinical findings     Febrile seizures  30  19.7  27  90  3  10  0.7678     No febrile seizures  122  80.3  104  85.2  18  14.8       Generalized seizures  34  18.8  26  76.5  8  23.5  0.1780     Never generalize  147  81.2  128  87.1  19  12.9       No aura  54  42.5  46  85.2  8  14.8  1.0000     Auras  73  57.5  62  84.9  11  15.1       Retardation  38  22.6  28  73.7  10  26.3  0.0364     No retardation  130  77.4  115  88.5  15  11.5      MRI findings     No structural abnormality  8  4.5  8  100  0  0  0.6064     Nonspecific lesion  22  12.4  16  72.7  6  27.3  0.2191     Neoplasia                combined Fisher exact   Total  68  38.2  61  89.7  7  10.3  0.4127  0.0150   Gangliogliioma or DNET  43  24.2  38  88.4  5  11.6  0.6378     Other tumor  25  14.0  23  92  2  8  0.5430     MTS  54  30.3  48  88.9  6  11.1  0.5143     Dysplasia  18  10.1  11  61.1  7  38.9  0.0202     Other (specific lesion)  8  4.5  7  87.5  1  12.5  1.0000     MRI sensitivity and specificity     Correct and precise prediction  134  75.2  116  86.6  18  13.4  0.3316     Incorrect or imprecise prediction  44  24.7  35  79.5  9  20.5      Histologic diagnosis     Gangliogliioma or DNET  65  35.3  56  86.2  9  13.8  0.8423  0.0422   Other tumor  16  10.6  16  100  0  0  0.1346     MTS  59  32.2  52  88.1  7  11.9  0.6709     Dysplasia  19  11.5  15  78.9  4  21.1  0.5117     Other  24  9.0  16  66.7  8  33.3  0.0421     Intraoperative navigation  23  29.1  19  82.6  4  17.4  1.0000     No navigation  56  70.9  46  82.1  10  17.9       Invasive diagnostic study  49  28.2  38  77.6  11  22.4  0.0990     No invasive diagnostic study  125  71.8  110  88  15  12       New immediate postoperative deficit  33  19.0  26  78.8  7  21.2  0.4297     No new immediate postop deficit  141  81.0  120  85.1  21  14.9       Number of seizure types              0.4201      1  110  61.1  92  83.6  18  16.4        2  59  32.8  53  89.9  6  10.1        3  11  6.1  8  72.7  3  27.3       Preop seizure frequency (per mo)              0.7642      <4  37  22.8  31  83.8  6  16.2        5-10  28  17.3  24  85.7  4  14.3        11-30  45  27.8  39  86.7  6  13.3        >30  51  32.1  42  82.4  9  17.6        Age ≥ 12  104  56.8  90  86.5  14  13.5  0.5347      Age < 12  79  43.2  65  82.3  14  17.7      DNET = dysembryoplastic neuroepithelial tumor; MTS = mesial temporal sclerosis; preop = preoperative; postop = postoperative; mo = month. View Large Clinical and Demographic Findings (Including Seizure Types and Frequency) Clinical and demographic data are summarized in Table 2. Seizure onset occurred significantly earlier in patients with dysplasia (P = .0199), and trended toward significance with mesial temporal sclerosis (MTS) (P = .0782) in comparison to patients with tumor/other diagnoses. This translates to 43.75% of dysplasia patients having seizure onset in the first year of life vs 28.57% of MTS patients, but only 16.67% of tumors/other. There was a history of febrile seizures more commonly with MTS (38.46%) than in patients with neoplasias (11.43%; P = .0312). No patient with dysplasia had a history of febrile seizures. Intellectual disability occurred in more patients with MTS (25.92%, P = .0252) or dysplasia (44.44%, P = .0024) than in patients with neoplasia (10.81%) and predisposed to a worse seizure outcome (73.68% vs 88.46%, P = .0364). The need for invasive diagnostic testing trended toward a lower chance of seizure freedom (77.6% vs 88%, P = .0990). Also, transient postoperative deficit did not correlate to seizure freedom (78.8% vs 85.1%, P = .4297). In terms of preoperative seizure status, none of the tested parameters were significant (seizure type, number of seizure types, or preoperative seizure frequency). Age at surgery also did not affect outcomes (86.5% vs 82.3% for patients under 12 achieving good outcomes, P = .5347). Additionally, age at epilepsy onset (P = .5) and duration of epilepsy (.44) were not associated with seizure outcome. Additional preoperative factors are discussed in Table 3. Imaging Findings Imaging findings are often used to guide therapy, especially when lesional findings correlate well with seizure localization on EEG. Structural abnormalities were found in 171 patients (95.56%) with no abnormalities detected in 8 patients (Table 3). These 8 patients were previously reported on, and all became seizure free.1 Correct MRI prediction did not differ from incorrect prediction regarding satisfactory seizure outcome (Table 3). Histopathological Findings One hundred eighty-two of 183 patients had a histopathological diagnosis (99.5%); 1 remained unclear but abnormal. Of the 182 lesions with a diagnosis, 96 were non-neoplastic (52.7%), 80 were neoplastic (43.5%), and 6 were normal (3.3%). There were 59 patients with MTS, the most frequent diagnosis. Additionally, among the non-neoplastic lesions, there were 19 patients with cortical dysplasia, 7 with gliosis, 3 heterotopias, and a few miscellaneous lesions. Among the neoplasms, there were 55 gangliogliomas, 10 dysembryoplastic neuroepithelial tumor, and 15 other neoplasms (3 World Health Organization [WHO] grade I astrocytomas, 5 WHO grade II astrocytomas, 4 WHO grade II oligodendrogliomas, and 3 WHO grade II pleomorphic xanthoastrocytomas). Histologic diagnosis was associated with satisfactory seizure outcomes excepting for other/normal, where only 66.7% had a satisfactory outcome (16 of 24, P = .0421; for additional, see Table 3). Significance for all histology was lost with multivariate analysis. Neuropsychological Findings Data from standardized neuropsychological assessments were available for 137 of the 183 patients (74.9%); however, 12 of these patients did not have all required pre- and postoperative data. The range of sample sizes for the different cognitive domains was n = 110 to 120. This study sample also contains some patients whose cognitive outcome has been previously reported.1 Only 2 children showed right-hemisphere language dominance in the Wada test; hence, outcomes were compared between left vs right TLE patients. Pre- and postsurgical cognitive performance and results from statistical testing are shown in Table 4. Regarding presurgical data, impaired performance (ie, clinical rating score < 2) was evident in 15% to 41% of the patients, depending on domain, with no effect of side of pathology/surgery; only a non-significant effect of higher frequency of impairment in L-TLE vs R-TLE patients was found for language. After surgery, we found no systematic cognitive decline on the group level. However, lateralization effects were found postsurgically with more L-TLE than R-TLE patients showing verbal memory impairment and more R-TLE than L-TLE patients showing impaired visuospatial abilities. For verbal memory, the rate of individual change was highest with about one-third of the patients showing decline and another third showing improvement. Lateralization effects were as follows: more R-TLE (46%) than L-TLE (22%) patients improved in verbal memory, and more L-TLE (29%) than R-TLE (14%) patients improved in visual memory. An effect of side of surgery on cognitive declines or loss of function was not found for any domain. TABLE 4. Pre- and Postsurgical Impairment and Performance Change by Side of Surgery   Presurgical impairment  Postsurgical impairment  Decline  Improvement    L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  Verbal memory  40%  42%  41%  .786  50%  30%  41%  .022  29%  25%  27%  .544  22%  46%  33%  .005  Visual memory  21%  21%  21%  .949  18%  26%  22%  .241  22%  26%  24%  .579  29%  14%  22%  .040  Language  41%  26%  34%  .082  38%  26%  33%  .157  13%  9%  11%  .431  29%  21%  26%  .286  Attention  25%  19%  22%  .446  12%  16%  14%  .513  7%  9%  8%  .771  25%  23%  24%  .775  Visuospatial abilities  16%  14%  15%  .740  6%  18%  11%  .039  9%  9%  9%  .992  32%  32%  32%  .926    Presurgical impairment  Postsurgical impairment  Decline  Improvement    L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  Verbal memory  40%  42%  41%  .786  50%  30%  41%  .022  29%  25%  27%  .544  22%  46%  33%  .005  Visual memory  21%  21%  21%  .949  18%  26%  22%  .241  22%  26%  24%  .579  29%  14%  22%  .040  Language  41%  26%  34%  .082  38%  26%  33%  .157  13%  9%  11%  .431  29%  21%  26%  .286  Attention  25%  19%  22%  .446  12%  16%  14%  .513  7%  9%  8%  .771  25%  23%  24%  .775  Visuospatial abilities  16%  14%  15%  .740  6%  18%  11%  .039  9%  9%  9%  .992  32%  32%  32%  .926  aL-TLE vs R-TLE, χ2 tests. P-values < .05 and respective data are set in bold. L-/R-TLE, left/right temporal lobe epilepsy. Impairment: clinical rating scores < 2; decline/improvement: presurgical>/<postsurgical clinical rating score. View Large TABLE 4. Pre- and Postsurgical Impairment and Performance Change by Side of Surgery   Presurgical impairment  Postsurgical impairment  Decline  Improvement    L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  Verbal memory  40%  42%  41%  .786  50%  30%  41%  .022  29%  25%  27%  .544  22%  46%  33%  .005  Visual memory  21%  21%  21%  .949  18%  26%  22%  .241  22%  26%  24%  .579  29%  14%  22%  .040  Language  41%  26%  34%  .082  38%  26%  33%  .157  13%  9%  11%  .431  29%  21%  26%  .286  Attention  25%  19%  22%  .446  12%  16%  14%  .513  7%  9%  8%  .771  25%  23%  24%  .775  Visuospatial abilities  16%  14%  15%  .740  6%  18%  11%  .039  9%  9%  9%  .992  32%  32%  32%  .926    Presurgical impairment  Postsurgical impairment  Decline  Improvement    L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  L-TLE (n = 68)  R-TLE (n = 57)  Total (n = 125)  P-valuea  Verbal memory  40%  42%  41%  .786  50%  30%  41%  .022  29%  25%  27%  .544  22%  46%  33%  .005  Visual memory  21%  21%  21%  .949  18%  26%  22%  .241  22%  26%  24%  .579  29%  14%  22%  .040  Language  41%  26%  34%  .082  38%  26%  33%  .157  13%  9%  11%  .431  29%  21%  26%  .286  Attention  25%  19%  22%  .446  12%  16%  14%  .513  7%  9%  8%  .771  25%  23%  24%  .775  Visuospatial abilities  16%  14%  15%  .740  6%  18%  11%  .039  9%  9%  9%  .992  32%  32%  32%  .926  aL-TLE vs R-TLE, χ2 tests. P-values < .05 and respective data are set in bold. L-/R-TLE, left/right temporal lobe epilepsy. Impairment: clinical rating scores < 2; decline/improvement: presurgical>/<postsurgical clinical rating score. View Large Surgical Outcomes and Complications There are 3 distinct periods in this case series. During the first period, between 1989 and 1993, when 36 operations were performed, many more ATLs were performed, with 28 surgeries being ATL (77.8%), 4 being lesionectomies with hippocampectomies (11.1%) and 4 purely lateral neocortical resections (11.1%). From 1994 to 2000, AH largely replaced ATL for cases of presumed pure mesial TLE, with only 7 ATL (10.9%), 29 AH (45.3%), 12 lesionectomies with hippocampectomies (18.75%), and 16 purely lateral neocortical resections (25%) for a total of 64 procedures. Following publication of our initial series of pediatric TLE, where AH resulted in a lower rate of seizure relief compared with standard ATL, especially with left-sided operations, our practice patterns changed again.1 From 2001 to 2012, we performed 23 ATL (27.7%), 15 AH (18.1%), 14 lesionectomies with hippocampectomies (16.9%), and 31 pure lateral neocortical resections (37.3%). This improved AH outcomes, but resulted in worsening ATL outcomes, with no change in overall outcomes. There were no significant differences in satisfactory seizure outcomes between cohorts. Overall in this series, 155 patients had a satisfactory outcome (84.7%) and only 28 patients had an unsatisfactory outcome (15.3%). ATL resulted in 82.8% satisfactory seizure outcomes (79.3% Engel I), AH with 78.8% (67.3% Engel I), lateral lesionectomy with AH with 81.8% (77.3% Engel I), and lateral lesionectomies with 94.1% (90.2% Engel I). Univariate analysis revealed that lesionectomy alone was significantly better than any other resection type (P = .0374). Multivariate analysis was then performed, confirming lesionectomy as the only independent predictor of better seizure outcome (P = .0147). Additional details are listed in Table 5. TABLE 5. Surgery, Histopathologic Diagnosis and Seizure Outcome   Number  Engel I/II (I)  Engel III/IV  P value  P value    All procedures  183  155 (144)  28         Percent    84.7 (78.7)  15.3        R  92  81 (67)  11    .2244     Percent    88.0 (72.8)  12.0        L  91  74 (66)  17         Percent    81.3 (72.5)  18.7        ATL  58  48 (46)  10    .6850     Percent    82.8 (79.3)  17.2        R ATL  31  27 (26)  4  R vs L       Percent    87.1 (83.9)  12.9  .4895      L ATL  27  21 (20)  6         Percent    77.8 (74.1)  22.2  ATL/path      ATL with MTS  17  15 (14)  2  .5902       Percent    88.2 (82.4)  11.8        ATL with tumor  18  16 (16)  2         Percent    88.9 (88.9)  11.1        ATL with dysplasia  10  8 (8)  2         Percent    80 (80)  20        ATL normal/other  13  9 (8)  4         Percent    69.2 (61.5)  30.8        AH  52  41 (35)  11    .3975     Percent    78.8 (67.3)  21.2  R vs L      R AH  25  21 (19)  4  .5029       Percent    84.0 (76.0)  16.0        L AH  27  20 (16)  7         Percent    74.1 (59.3)  25.9        AH with MTS  35  30 (25)  5  AH/path       Percent    85.7 (71.4)  14.3  .0055      AH with tumor  14  11 (10)  3         Percent    78.6 (71.4)  21.4        AH with dysplasia/normal  3  0 (0)  3         Percent    0.0 (0.0)  100.0        Lat Lx with AH  22  18 (17)  4    .751     Percent    81.8 (77.3)  18.2  R vs L      R Lx + AH  10  8 (8)  2  1       Percent    80.0 (80.0)  20.0        L Lx + AH  12  10 (9)  2  Lx + HC/path       Percent    83.3 (75.0)  16.7  .3042      Lx + AH with MTS  2  2 (2)  0         Percent    100.0 (100.0)  0.0        Lx + AH with tumor  14  11 (10)  3         Percent    78.6 (71.4)  21.4        Lx + AH dysplasia/other  6  5 (5)  1         Percent    83.3 (83.3)  16.7        Lat Lx without AH  51  48 (46)  3    .0374  positive   Percent    94.1 (90.2)  5.9  R vs L      R Lx without AH  26  25 (25)  1  .6098       Percent    96.2 (96.2)  3.8        L Lx without AH  25  23 (21)  2         Percent    92.0 (84.0)  8.0  Lx no HC      Lx without AH tumor  34  33 (32)  1  .2068       Percent    97.1 (94.1)  2.9        Lx without AH other  17  15 (14)  2         Percent    88.2 (82.4)  11.8        Totals  184  156 (145)  28         Percent    84.8 (78.8)  15.2          Number  Engel I/II (I)  Engel III/IV  P value  P value    All procedures  183  155 (144)  28         Percent    84.7 (78.7)  15.3        R  92  81 (67)  11    .2244     Percent    88.0 (72.8)  12.0        L  91  74 (66)  17         Percent    81.3 (72.5)  18.7        ATL  58  48 (46)  10    .6850     Percent    82.8 (79.3)  17.2        R ATL  31  27 (26)  4  R vs L       Percent    87.1 (83.9)  12.9  .4895      L ATL  27  21 (20)  6         Percent    77.8 (74.1)  22.2  ATL/path      ATL with MTS  17  15 (14)  2  .5902       Percent    88.2 (82.4)  11.8        ATL with tumor  18  16 (16)  2         Percent    88.9 (88.9)  11.1        ATL with dysplasia  10  8 (8)  2         Percent    80 (80)  20        ATL normal/other  13  9 (8)  4         Percent    69.2 (61.5)  30.8        AH  52  41 (35)  11    .3975     Percent    78.8 (67.3)  21.2  R vs L      R AH  25  21 (19)  4  .5029       Percent    84.0 (76.0)  16.0        L AH  27  20 (16)  7         Percent    74.1 (59.3)  25.9        AH with MTS  35  30 (25)  5  AH/path       Percent    85.7 (71.4)  14.3  .0055      AH with tumor  14  11 (10)  3         Percent    78.6 (71.4)  21.4        AH with dysplasia/normal  3  0 (0)  3         Percent    0.0 (0.0)  100.0        Lat Lx with AH  22  18 (17)  4    .751     Percent    81.8 (77.3)  18.2  R vs L      R Lx + AH  10  8 (8)  2  1       Percent    80.0 (80.0)  20.0        L Lx + AH  12  10 (9)  2  Lx + HC/path       Percent    83.3 (75.0)  16.7  .3042      Lx + AH with MTS  2  2 (2)  0         Percent    100.0 (100.0)  0.0        Lx + AH with tumor  14  11 (10)  3         Percent    78.6 (71.4)  21.4        Lx + AH dysplasia/other  6  5 (5)  1         Percent    83.3 (83.3)  16.7        Lat Lx without AH  51  48 (46)  3    .0374  positive   Percent    94.1 (90.2)  5.9  R vs L      R Lx without AH  26  25 (25)  1  .6098       Percent    96.2 (96.2)  3.8        L Lx without AH  25  23 (21)  2         Percent    92.0 (84.0)  8.0  Lx no HC      Lx without AH tumor  34  33 (32)  1  .2068       Percent    97.1 (94.1)  2.9        Lx without AH other  17  15 (14)  2         Percent    88.2 (82.4)  11.8        Totals  184  156 (145)  28         Percent    84.8 (78.8)  15.2        L = left; R = right; ATL = anterior temporal lobectomy; MTS = mesial temporal sclerosis; AH = amygdalohippocampectomy; Lx = lesionectomy; lat = lateral. View Large TABLE 5. Surgery, Histopathologic Diagnosis and Seizure Outcome   Number  Engel I/II (I)  Engel III/IV  P value  P value    All procedures  183  155 (144)  28         Percent    84.7 (78.7)  15.3        R  92  81 (67)  11    .2244     Percent    88.0 (72.8)  12.0        L  91  74 (66)  17         Percent    81.3 (72.5)  18.7        ATL  58  48 (46)  10    .6850     Percent    82.8 (79.3)  17.2        R ATL  31  27 (26)  4  R vs L       Percent    87.1 (83.9)  12.9  .4895      L ATL  27  21 (20)  6         Percent    77.8 (74.1)  22.2  ATL/path      ATL with MTS  17  15 (14)  2  .5902       Percent    88.2 (82.4)  11.8        ATL with tumor  18  16 (16)  2         Percent    88.9 (88.9)  11.1        ATL with dysplasia  10  8 (8)  2         Percent    80 (80)  20        ATL normal/other  13  9 (8)  4         Percent    69.2 (61.5)  30.8        AH  52  41 (35)  11    .3975     Percent    78.8 (67.3)  21.2  R vs L      R AH  25  21 (19)  4  .5029       Percent    84.0 (76.0)  16.0        L AH  27  20 (16)  7         Percent    74.1 (59.3)  25.9        AH with MTS  35  30 (25)  5  AH/path       Percent    85.7 (71.4)  14.3  .0055      AH with tumor  14  11 (10)  3         Percent    78.6 (71.4)  21.4        AH with dysplasia/normal  3  0 (0)  3         Percent    0.0 (0.0)  100.0        Lat Lx with AH  22  18 (17)  4    .751     Percent    81.8 (77.3)  18.2  R vs L      R Lx + AH  10  8 (8)  2  1       Percent    80.0 (80.0)  20.0        L Lx + AH  12  10 (9)  2  Lx + HC/path       Percent    83.3 (75.0)  16.7  .3042      Lx + AH with MTS  2  2 (2)  0         Percent    100.0 (100.0)  0.0        Lx + AH with tumor  14  11 (10)  3         Percent    78.6 (71.4)  21.4        Lx + AH dysplasia/other  6  5 (5)  1         Percent    83.3 (83.3)  16.7        Lat Lx without AH  51  48 (46)  3    .0374  positive   Percent    94.1 (90.2)  5.9  R vs L      R Lx without AH  26  25 (25)  1  .6098       Percent    96.2 (96.2)  3.8        L Lx without AH  25  23 (21)  2         Percent    92.0 (84.0)  8.0  Lx no HC      Lx without AH tumor  34  33 (32)  1  .2068       Percent    97.1 (94.1)  2.9        Lx without AH other  17  15 (14)  2         Percent    88.2 (82.4)  11.8        Totals  184  156 (145)  28         Percent    84.8 (78.8)  15.2          Number  Engel I/II (I)  Engel III/IV  P value  P value    All procedures  183  155 (144)  28         Percent    84.7 (78.7)  15.3        R  92  81 (67)  11    .2244     Percent    88.0 (72.8)  12.0        L  91  74 (66)  17         Percent    81.3 (72.5)  18.7        ATL  58  48 (46)  10    .6850     Percent    82.8 (79.3)  17.2        R ATL  31  27 (26)  4  R vs L       Percent    87.1 (83.9)  12.9  .4895      L ATL  27  21 (20)  6         Percent    77.8 (74.1)  22.2  ATL/path      ATL with MTS  17  15 (14)  2  .5902       Percent    88.2 (82.4)  11.8        ATL with tumor  18  16 (16)  2         Percent    88.9 (88.9)  11.1        ATL with dysplasia  10  8 (8)  2         Percent    80 (80)  20        ATL normal/other  13  9 (8)  4         Percent    69.2 (61.5)  30.8        AH  52  41 (35)  11    .3975     Percent    78.8 (67.3)  21.2  R vs L      R AH  25  21 (19)  4  .5029       Percent    84.0 (76.0)  16.0        L AH  27  20 (16)  7         Percent    74.1 (59.3)  25.9        AH with MTS  35  30 (25)  5  AH/path       Percent    85.7 (71.4)  14.3  .0055      AH with tumor  14  11 (10)  3         Percent    78.6 (71.4)  21.4        AH with dysplasia/normal  3  0 (0)  3         Percent    0.0 (0.0)  100.0        Lat Lx with AH  22  18 (17)  4    .751     Percent    81.8 (77.3)  18.2  R vs L      R Lx + AH  10  8 (8)  2  1       Percent    80.0 (80.0)  20.0        L Lx + AH  12  10 (9)  2  Lx + HC/path       Percent    83.3 (75.0)  16.7  .3042      Lx + AH with MTS  2  2 (2)  0         Percent    100.0 (100.0)  0.0        Lx + AH with tumor  14  11 (10)  3         Percent    78.6 (71.4)  21.4        Lx + AH dysplasia/other  6  5 (5)  1         Percent    83.3 (83.3)  16.7        Lat Lx without AH  51  48 (46)  3    .0374  positive   Percent    94.1 (90.2)  5.9  R vs L      R Lx without AH  26  25 (25)  1  .6098       Percent    96.2 (96.2)  3.8        L Lx without AH  25  23 (21)  2         Percent    92.0 (84.0)  8.0  Lx no HC      Lx without AH tumor  34  33 (32)  1  .2068       Percent    97.1 (94.1)  2.9        Lx without AH other  17  15 (14)  2         Percent    88.2 (82.4)  11.8        Totals  184  156 (145)  28         Percent    84.8 (78.8)  15.2        L = left; R = right; ATL = anterior temporal lobectomy; MTS = mesial temporal sclerosis; AH = amygdalohippocampectomy; Lx = lesionectomy; lat = lateral. View Large For cases with known dual pathology, the surgical strategy consisted either in ATL, typically including the lesion within the ATL (n = 9), or lesionectomy plus AH (n = 1). However, the series did not include a case with reoperation for a failed pure neocortical resection. In total, there were 9 reoperations, typically involving a more extensive resection (n = 7), but also including 1 vagal nerve stimulator implantation and 1 hemispherotomy after failed ATL because of multiple infarcts with extensive parenchymal damage. Postoperative examinations of visual fields were available for 141 patients, with normal findings in 102 (72.3%). Incomplete or complete upper contralateral quadrantanopia was observed in 30 patients (21.3%). Nine patients had a complete contralateral homonymous hemianopia (6.4%). Patients untested were typically due to young age. There were no intraoperative or postoperative deaths in this series. Intraoperative complications included a small arterial injury in 1 patient, a small venous injury in 1 patient, and a brief cardiac pause that resolved without complication in 1 patient. Postoperative complications included 2 patients with lasting hemiparesis (1.1%), 3 patients with infarcts (1.6%), 6 cases of postoperative meningitis (3.3%), 2 postoperative hemorrhages (1 requiring revision surgery; 1.1%), and 2 wound infections requiring revision (1.1%), for a total operating complication rate of 9.8%. Collective Pediatric TLE Experience A review of the literature was undertaken of all reported surgical pediatric TLE cases with data extracted related to surgical approach, pathological diagnosis, complications, and seizure outcome (Table 1). A total of 2089 unique cases were identified, of which there were 841 ATL, 403 AH, and 243 lesionectomy (some approaches not extractable). In terms of pathology, 617 patients had MTS, 672 had tumors, 276 had cortical dysplasia, and 258 had other pathology (some with multiple pathologies). Permanent neurological deficits were reported in 1.9% of patients, hematoma in 1.2%, permanent visual field deficits in 14.4%, infection in 3.7%, reoperation in 10.1%, and an overall reported complication rate of 9.4% (not including visual field deficits). Satisfactory seizure outcomes occurred in 1629 patients (79%) with unsatisfactory outcomes in 433 (21%). DISCUSSION Clinical Outcomes In this study, 183 consecutive pediatric TLE patients were evaluated. This represents, to our knowledge, the largest single study ever reported in the literature. Overall, we observed a satisfactory seizure control rate of 84.7%. In general, outcomes have improved over time, with better outcomes reported in more recent series.1-38 This is likely due to improvements in invasive and noninvasive techniques to determine seizure localization, and lesion detection and excision. Length of follow-up and seizure freedom It has been previously suggested that the durability of seizure freedom after surgery is limited by time.38 This was reported as time to first seizure, but this results in some good outcomes being censored early due to a single seizure event. Perhaps a more relevant indicator of durability is the patient's Engel score at time of last follow-up, with patients grouped by length of follow-up (Figure). Patients were divided approximately in thirds by length of follow-up. There was no statistically significant difference in Engel I outcomes with greater follow-up (P = .7770). Any worsening in durability over time may be limited to Engel II-IV patients, implying that incomplete resection of the epileptogenic zone (as represented by early non-Engel I outcomes) risks surgical durability. Histopathological and Imaging Features One hundred eighty-two of 183 patients had a histopathological diagnosis (99.5%); 1 remained unclear but abnormal. Of the 182 lesions with a diagnosis, 96 were non-neoplastic (52.7%), 80 were neoplastic (49.3%), and 6 were normal (3.3%). Among the neoplasms, 65 were benign and 15 were malignant, emphasizing the mostly benign nature of epilepsy-associated temporal neoplasms in children.1,28,73,74 The most frequent diagnosis in this cohort was MTS. This correlates well with the frequency of MTS causing TLE in adult patients. Additional diagnoses included cortical dysplasia, gliosis, heterotopias, and a few miscellaneous lesions. Only other/normal was associated with worse outcomes (66.7%, P = .0421, see Table 3). Positive imaging findings on MRI were also predictive of good surgical outcome (see Table 3). This suggests that any abnormality correlating with seizure localization should be targeted for resection, with expected excellent seizure freedom with good durability. Resection Strategies Resection strategies have been adjusted over time, as new information altered patient management. Early series involved localization only to the temporal lobe, with ATL being the treatment of choice. Increasingly, invasive monitoring and improvements in MR imaging have been used to more precisely localize the epileptogenic focus, resulting in more tailored approaches.1 When reporting the first approximately half of patients in this series, left-sided surgery and AH both resulted in less satisfactory seizure control. These effects were lost with a larger patient cohort, showing some of the challenges of relying on nonrandomized, small case series in drawing firm conclusions. Lesionectomy was the only procedure that positively correlated with seizure outcomes, although all procedures resulted in favorable seizure control rates. The high success rate of lesionectomy (94.1%) may be due to the association of lesional tissue with epileptogenic focus, and the greater ease of lesional resection. It is important to emphasize the somewhat disappointing results with AH in our previously published pediatric series.1 We believe this may have been related to multiple pathologies being present with MTS in pediatric patients (35.19%). By becoming more selective in which patients underwent AH alone, while not improving overall seizure freedom, we did improve results in AH patients alone (74.1% previously reported, now 86.7% in patients since 2001). This implies that patients with multiple pathologies, even after ATL, are less likely to achieve seizure freedom. Therefore, patients with multiple pathologies should undergo careful preoperative evaluation that likely includes invasive monitoring to help better select patients for surgery. As far as complications are concerned, complications reported in this study correlate well with those reported in other series.1-38 Neuropsychological Findings In extending our previous report from 2004, we were now able to evaluate the cognitive outcome of the largest series of surgical pediatric TLE patients. Using composite scores and categorical data instead of psychometric test raw data for all available scores yields some loss of information, but it helped to overcome serious methodological issues related to neuropsychological evaluations in pediatric samples (eg, use of different instruments for domains for different age groups, varying sample sizes for individual measures, and small sample of patients with complete datasets). Overall, and perhaps most importantly, we found no evidence for systematic postsurgical cognitive decline. Apart from a nonsignificant difference of more frequent language impairment in L-TLE patients, no significant lateralization effects were seen in the presurgical performance data. Postoperatively, however, the frequency of cognitive impairments in L-TLE and R-TLE patients differed for verbal memory and visuospatial abilities in accordance with a well-established pattern dependent on hemisphere language dominance. In this regard, it is important to note that this pattern resulted not from differential losses but improvements and recovery in left vs right TLE. These results match well with previous data showing long-term postoperative improvements in intellectual function related to tempering of the AED, and differential memory outcomes including episodic memory being better with sparing hippocampus and semantic memory better with sparing of the temporal pole.63,75 Overall, our data underline the safety of TLE surgery in children as far as cognitive outcome is concerned. Collective Pediatric TLE Experience It is important to note the unique cohort of patients in this pediatric series (a number of older patients, many with tumors, few with dysplasia or intellectual disability). This is likely at least part of the explanation for the higher seizure-free rates presented in this series. In order to better illustrate the benefit of surgery for medically refractory pediatric temporal-lobe epilepsy patients, we reviewed all surgical pediatric TLE cases reported in the literature we could find with extractable data regarding seizure outcomes, and where possible, surgical approach and complication rates. A total of 2089 unique cases were identified where outcomes data were available (841 ATL, 403 AH, and 243 lesionectomies). While there were significant differences in patient selection, series size, preoperative workup, and modality of treatment, this review helps put surgical treatment of pediatric TLE in historical and modern perspective. Overall, complications are quite acceptable and commensurate with craniotomy for other indications. These outcomes favor surgical treatment of all cases of medically refractory epilepsy localizing to the temporal lobe. CONCLUSION Pediatric patients benefit from surgery for medically refractory TLE. Seizure freedom appears to have extensive durability in a large proportion of surgically treated patients. Disclosure The authors have no personal, financial, or institutional interest in any of the drugs, materials, or devices described in this article. REFERENCES 1. Clusmann H, Kral T, Gleissner U et al.   Analysis of different types of resection for pediatric patients with temporal lobe epilepsy. Neurosurgery . 2004; 54( 4): 847- 860. Google Scholar CrossRef Search ADS PubMed  2. Davidson S, Falconer M. Outcome of surgery in 40 children with temporal-lobe epilepsy. Lancet . 1975; 1( 7919): 1260- 1263. Google Scholar CrossRef Search ADS PubMed  3. Rasmussen T. Surgical treatment of complex partial seizures: results, lessons, and problems. Epilepsia . 1983; 24( s1): S65- S76. Google Scholar CrossRef Search ADS PubMed  4. Green J, Pootrakul A. Surgical aspects of the treatmentof epilepsy during childhood and adolescence. Ariz Med . 1982; 39: 35- 38. Google Scholar PubMed  5. Vaernet K. Temporal Lobotomy in Children and Young Adults . New York: Raven Press; 1983. 6. Meyer F, Marsh W, Laws EJ, Sharbrough F. Temporal lobectomy in children with epilepsy. J Neurosurg . 1986; 64( 3): 371- 376. Google Scholar CrossRef Search ADS PubMed  7. Engel J, Van Ness P, Rasmussen T, Ojemann L. Outcome With Respect to Epileptic Seizures . New York: Raven Press; 1992. 8. Radhakrishnan K, So E, Silbert P et al.   Predictors of outcome of anterior temporal lobectomy for intractable epilepsy: a multivariate study. Neurology . 1998; 51( 2): 465- 471. Google Scholar CrossRef Search ADS PubMed  9. Arruda F, Cendes F, Andermann F et al.   Mesial atrophy and outcome after amygdalohippocampectomy or temporal lobe removal. Ann Neurol . 1996; 40( 3): 446- 450. Google Scholar CrossRef Search ADS PubMed  10. Clusmann H, Schramm J, Kral T et al.   Prognostic factors and outcome after different types of resection for temporal lobe epilepsy. J Neurosurg . 2002; 97( 5): 1131- 1141. Google Scholar CrossRef Search ADS PubMed  11. Goldstein L, Polkey C. Short-term cognitive changes after unilateral temporal lobectomy or unilateral amygdalo-hippocampectomy for the relief of temporal lobe epilepsy. J Neurol Neurosurg Psychiatry . 1993; 56( 2): 135- 140. Google Scholar CrossRef Search ADS PubMed  12. Helmstaedter C, Elger C, Hufnagel A, Zentner J, Schramm J. Different effects of left anterior temporal lobectomy, selective amygdalohippocampectomy, and temporal cortical lesionectomy on verbal learning, memory, and recognition. J Epilepsy . 1996; 9( 1): 39- 45. Google Scholar CrossRef Search ADS   13. Rutledge S, Snead OC 3rd, Morawetz R, Chandra-Sekar B. Brain tumors presenting as a seizure disorder in infants. J Child Neurol . 1987; 2( 3): 214- 219. Google Scholar CrossRef Search ADS PubMed  14. Drake J, Hoffman H, Kobayashi J, Hwang P, Becker L. Surgical management of children with temporal lobe epilepsy and mass lesions. Neurosurgery . 1987; 21( 6): 792- 797. Google Scholar CrossRef Search ADS PubMed  15. Harbord M, Manson J. Temporal lobe epilepsy in childhood: reappraisal of etiology and outcome. Pediatr Neurol . 1987; 3( 5): 263- 268. Google Scholar CrossRef Search ADS PubMed  16. Adams C, Beardsworth E, Oxbury S, Oxbury J, Fenwick P. Temporal lobectomy in 44 children: outcome and neuropsychological follow-up. J Epilepsy . 1990; 3: 157- 168. Google Scholar CrossRef Search ADS   17. Mizrahi E, Kellaway P, Grossman R et al.   Anterior temporal lobectomy and medically refractory temporal lobe epilepsy of childhood. Epilepsia . 1990; 31( 3): 302- 312. Google Scholar CrossRef Search ADS PubMed  18. Hopkins I, Klug G. Temporal lobectomy for the treatment of intractable complex partial seizures of temporal lobe origin in early childhood. Dev Med Child Neurol . 1991; 33( 1): 26- 31. Google Scholar CrossRef Search ADS PubMed  19. Duchowny M, Levin B, Jayakar P et al.   Temporal lobectomy in early childhood. Epilepsia . 1992; 33( 2): 298- 303. Google Scholar CrossRef Search ADS PubMed  20. Adelson PD, Peacock WJ, Chugani HT et al.   Temporal and extended temporal resections for the treatment of intractable seizures in early childhood. Pediatr Neurosurg . 1992; 18( 4): 169- 178. Google Scholar CrossRef Search ADS PubMed  21. Jay V, Becker L, Otsubo H, Hwang P, Hoffman H, Harwood-Nash D. Pathology of temporal lobectomy for refractory seizures in children. J Neurosurg . 1993; 79( 1): 53- 61. Google Scholar CrossRef Search ADS PubMed  22. Gilliam F, Wyllie E, Kashden J et al.   Epilepsy surgery outcome: comprehensive assessment in children. Neurology . 1997; 48( 5): 1368- 1374. Google Scholar CrossRef Search ADS PubMed  23. Blume WT, Girvin JP, McLachlan RS, Gilmore BE. Effective temporal lobectomy in childhood without invasive EEG. Epilepsia . 1997; 38( 2): 164- 167. Google Scholar CrossRef Search ADS PubMed  24. Salanova V, Markand O, Worth R et al.   FDG-PET and MRI in temporal lobe epilepsy: relationship to febrile seizures, hippocampal sclerosis and outcome. Acta Neurol Scand . 1998; 97( 3): 146- 153. Google Scholar CrossRef Search ADS PubMed  25. Szabó C, Wyllie E, Stanford L et al.   Neuropsychological effect of temporal lobe resection in preadolescent children with epilepsy. Epilepsia . 1998; 39( 8): 814- 819. Google Scholar CrossRef Search ADS PubMed  26. Williams J, Griebel M, Sharp G, Boop F. Cognition and behavior after temporal lobectomy in pediatric patients with intractable epilepsy. Pediatr Neurol . 1998; 19( 3): 189- 194. Google Scholar CrossRef Search ADS PubMed  27. Munari C, Lo R, Minotti L et al.   Presurgical strategies and epilepsy surgery in children: comparison of literature and personal experiences. Childs Nerv Syst . 1999; 15( 4): 149- 157. Google Scholar CrossRef Search ADS PubMed  28. Iannelli A, Guzzetta F, Battaglia D, Iuvone L, Di Rocco C. Surgical treatment of temporal tumors associated with epilepsy in children. Pediatr Neurosurg . 2000; 32( 5): 248- 254. Google Scholar CrossRef Search ADS PubMed  29. Robinson S, Park T, Blackburn L, Bourgeois B, Arnold S, Dodson W. Transparahippocampal selective amygdalohippocampectomy in children and adolescents: Efficacy of the procedure and cognitive morbidity in patients. J Neurosurg . 2000; 93( 3): 402- 409. Google Scholar CrossRef Search ADS PubMed  30. Paolicchi JM, Jayakar P, Dean P et al.   Predictors of outcome in pediatric epilepsy surgery. Neurology . 2000; 54( 3): 642- 642. Google Scholar CrossRef Search ADS PubMed  31. Mohamed A, Wyllie E, Ruggieri P et al.   Temporal lobe epilepsy due to hippocampal sclerosis in pediatric candidates for epilepsy surgery. Neurology . 2001; 56( 12): 1643- 1649. Google Scholar CrossRef Search ADS PubMed  32. Sinclair DB, Aronyk KE, Snyder TJ et al.   Pediatric epilepsy surgery at the University of Alberta: 1988-2000. Pediatr Neurol . 2003; 29( 4): 302- 311. Google Scholar CrossRef Search ADS PubMed  33. Mittal S, Montes J, Farmer J et al.   Long-term outcome after surgical treatment of temporal lobe epilepsy in children. J Neurosurg . 2005; 103( 5 Suppl): 401- 412. Google Scholar PubMed  34. Maton B, Jayakar P, Resnick T, Morrison G, Raghed J, Duchowny M. Surgery for medically intractable temporal lobe epilepsy during early life. Epilepsia . 2008; 49( 1): 80- 87. Google Scholar CrossRef Search ADS PubMed  35. Kim S, Wang K, Hwang Y et al.   Epilepsy surgery in children: outcomes and complications. J Neurosurg Pediatr . 2008; 1( 4): 277- 283. Google Scholar CrossRef Search ADS PubMed  36. Kan P, Van Orman C, Kestle JR. Outcomes after surgery for focal epilepsy in children. Childs Nerv Syst . 2008; 24( 5): 587- 591. Google Scholar CrossRef Search ADS PubMed  37. Lee YJ, Kang HC, Bae SJ et al.   Comparison of temporal lobectomies of children and adults with intractable temporal lobe epilepsy. Childs Nerv Syst . 2010; 26( 2): 177- 183. Google Scholar CrossRef Search ADS PubMed  38. Lopez-Gonzalez MA, Gonzalez-Martinez JA, Jehi L, Kotagal P, Warbel A, Bingaman W. Epilepsy surgery of the temporal lobe in pediatric population. Neurosurgery . 2012; 70( 3): 684- 692. Google Scholar CrossRef Search ADS PubMed  39. Goldstein R, Harvey A, Duchowny M et al.   Preoperative clinical, EEG, and imaging findings do not predict seizure outcome following temporal lobectomy in childhood. J Child Neurol . 1996; 11( 6): 445- 450. Google Scholar CrossRef Search ADS PubMed  40. Bizzi J, Bruce D, North R et al.   Surgical treatment of focal epilepsy in children; results in 37 patients. Pediatr Neurosurg . 1997; 26( 2): 83- 92. Google Scholar CrossRef Search ADS PubMed  41. Gashlan M, Loy-English I, Ventureyra E, Keene D. Predictors of seizure outcome following cortical resection in pediatric and adolescent patients with medically refractory epilepsy. Childs Nerv Syst . 1999; 15( 1): 45- 50. Google Scholar CrossRef Search ADS PubMed  42. Khajavi K, Comair Y, Wyllie E, Palmer J, Morris H, Hahn J. Surgical management of pediatric tumor-associated epilepsy. J Child Neurol . 1999; 14( 1): 15- 25. Google Scholar CrossRef Search ADS PubMed  43. Sotero de Menezes M, Connolly M, Bolanos A, Madsen J, Black P, Riviello J Jr. Temporal lobectomy in early childhood: the need for long-term follow-up. J Child Neurol . 2001; 16( 8): 585- 590. Google Scholar CrossRef Search ADS PubMed  44. Sinclair D, Aronyk K, Snyder T et al.   Pediatric epilepsy surgery at the University of Alberta: 1988-2000. Pediatr Neurol . 2003; 29( 4): 302- 311. Google Scholar CrossRef Search ADS PubMed  45. Cataltepe O, Turanli G, Yalnizoglu D, Topçu M, Akalan N. Surgical management of temporal lobe tumor-related epilepsy in children. J Neurosurg . 2005; 102( 3 Suppl): 280- 287. Google Scholar PubMed  46. Freitag H, Tuxhorn I. Cognitive function in preschool children after epilepsy surgery: rationale for early intervention. Epilepsia . 2005; 46( 4): 561- 567. Google Scholar CrossRef Search ADS PubMed  47. Korkman M, Granström M, Kantola-Sorsa E et al.   Two-year follow-up of intelligence after pediatric epilepsy surgery. Pediatr Neurol . 2005; 33( 3): 173- 178. Google Scholar CrossRef Search ADS PubMed  48. McLellan A, Davies S, Heyman I et al.   Psychopathology in children with epilepsy before and after temporal lobe resection. Dev Med Child Neurol . 2005; 47( 10): 666- 672. Google Scholar CrossRef Search ADS PubMed  49. Terra-Bustamante V, Inuzuca L, Fernandes R et al.   Temporal lobe epilepsy surgery in children and adolescents: clinical characteristics and post-surgical outcome. Seizure . 2005; 14( 4): 274- 281. Google Scholar CrossRef Search ADS PubMed  50. Benifla M, Otsubo H, Ochi A et al.   Temporal lobe surgery for intractable epilepsy in children: an analysis of outcomes in 126 children. Neurosurgery . 2006; 59( 6): 1203- 1214. Google Scholar CrossRef Search ADS PubMed  51. Larysz D, Larysz P, Mandera M. Evaluation of quality of life and clinical status of children operated on for intractable epilepsy. Childs Nerv Syst . 2006; 23( 1): 91- 97. Google Scholar CrossRef Search ADS PubMed  52. Liu S, An N, Yang H et al.   Pediatric intractable epilepsy syndromes: reason for early surgical intervention. Brain Dev . 2007; 29( 2): 69- 78. Google Scholar CrossRef Search ADS PubMed  53. de Koning T, Versnel H, Jennekens-Schinkel A et al.   Language development before and after temporal surgery in children with intractable epilepsy. Epilepsia . 2009; 50( 11): 2408- 2419. Google Scholar CrossRef Search ADS PubMed  54. Lee J, Lee B, Joo E et al.   Dysembryoplastic neuroepithelial tumors in pediatric patients. Brain Dev . 2009; 31( 9): 671- 681. Google Scholar CrossRef Search ADS PubMed  55. Hemb M, Velasco T, Parnes M et al.   Improved outcomes in pediatric epilepsy surgery: The UCLA experience, 1986-2008. Neurology . 2010; 74( 22): 1768- 1775. Google Scholar CrossRef Search ADS PubMed  56. López H, Fohlen M, Lelouch-Tubiana A et al.   Heterotopia associated with hippocampal sclerosis: an under-recognized cause of early onset epilepsy in children operated on for temporal lobe epilepsy. Neuropediatrics . 2010; 41( 04): 167- 175. Google Scholar CrossRef Search ADS PubMed  57. Ogiwara H, Nordli D, DiPatri A, Alden T, Bowman R, Tomita T. Pediatric epileptogenic gangliogliomas: seizure outcome and surgical results. J Neurosurg Pediatr . 2010; 5( 3): 271- 276. Google Scholar CrossRef Search ADS PubMed  58. Zupanc M, Rubio E, Werner R et al.   Epilepsy surgery outcomes: quality of life and seizure control. Pediatr Neurol . 2010; 42( 1): 12- 20. Google Scholar CrossRef Search ADS PubMed  59. Cersósimo R, Flesler S, Bartuluchi M, Soprano A, Pomata H, Caraballo R. Mesial temporal lobe epilepsy with hippocampal sclerosis: study of 42 children. Seizure . 2011; 20( 2): 131- 137. Google Scholar CrossRef Search ADS PubMed  60. Dagar A, Chandra P, Chaudhary K et al.   Epilepsy surgery in a pediatric population: a retrospective study of 129 children from a tertiary care hospital in a developing country along with assessment of quality of life. Pediatr Neurosurg . 2011; 47( 3): 186- 193. Google Scholar CrossRef Search ADS PubMed  61. García-Fernández M, Fournier-Del Castillo C, Ugalde-Canitrot A et al.   Epilepsy surgery in children with developmental tumours. Seizure . 2011; 20( 8): 616- 627. Google Scholar CrossRef Search ADS PubMed  62. Jayalakshmi S, Panigrahi M, Kulkarni D, Uppin M, Somayajula S, Challa S. Outcome of epilepsy surgery in children after evaluation with non-invasive protocol. Neurol India . 2011; 59( 1): 30- 36. Google Scholar CrossRef Search ADS PubMed  63. Skirrow C, Cross J, Cormack F, Harkness W, Vargha-Khadem F, Baldeweg T. Long-term intellectual outcome after temporal lobe surgery in childhood. Neurology . 2011; 76( 15): 1330- 1337. Google Scholar CrossRef Search ADS PubMed  64. Uliel-Sibony S, Kramer U, Fried I, Fattal-Valevski A, Constantini S. Pediatric temporal low-grade glial tumors: epilepsy outcome following resection in 48 children. Childs Nerv Syst . 2011; 27( 9): 1413- 1418. Google Scholar CrossRef Search ADS PubMed  65. Kasasbeh A, Hwang E, Steger-May K et al.   Association of magnetic resonance imaging identification of mesial temporal sclerosis with pathological diagnosis and surgical outcomes in children following epilepsy surgery. J Neurosurg Pediatr . 2012; 9( 5): 552- 561. Google Scholar CrossRef Search ADS PubMed  66. Dwivedi R, Ramanujam B, Chandra P et al.   Surgery for drug-resistant epilepsy in children. N Engl J Med . 2017; 377( 17): 1639- 1647. Google Scholar CrossRef Search ADS PubMed  67. Kuzniecky R, Burgard S, Faught E, Morawetz R, Bartolucci A. Predictive value of magnetic resonance imaging in temporal lobe epilepsy surgery. Arch Neurol . 1993; 50( 1): 65- 69. Google Scholar CrossRef Search ADS PubMed  68. Behrens E, Schramm J, Zentner J, Konig R. Surgical and neurological complications in a series of 708 epilepsy surgery procedures. Neurosurgery . 1997; 41( 1): 1- 10. Google Scholar CrossRef Search ADS PubMed  69. Kral T, Clusmann H, Urbach H et al.   Preoperative evaluation for epilepsy surgery (Bonn algorithm). Zentralbl Neurochir . 2002; 63( 03): 106- 110. Google Scholar CrossRef Search ADS PubMed  70. Wellmer J, von der Groeben F, Klarmann U et al.   Risks and benefits of invasive epilepsy surgery workup with implanted subdural and depth electrodes. Epilepsia . 2012; 53( 8): 1322- 1332. Google Scholar CrossRef Search ADS PubMed  71. Association AP. Diagnostic and Statistical Manual of Mental Disorders . 5th ed. Arlington, VA: American Psychiatric Publishing; 2013. Google Scholar CrossRef Search ADS   72. Yasa̧rgil M, Teddy P, Roth P. Selective amygdalo-hippocampectomy: operative anatomy and surgical technique. Adv Tech Stand Neurosurg . 1985; 12: 93- 123. Google Scholar CrossRef Search ADS PubMed  73. Stanescu Cosson R, Varlet P, Beuvon F et al.   Dysembryoplastic neuroepithelial tumors: CT, MR findings and imaging follow-up—a study of 53 cases. J Neuroradiol . 2001; 28 (4): 230- 240. Google Scholar PubMed  74. Wolf H, Campos M, Zentner J et al.   Surgical pathology of temporal lobe epilepsy. Experience with 216 cases. J Neuropathol Exp Neurol . 1993; 42( 5): 499- 506. Google Scholar CrossRef Search ADS   75. Skirrow C, Cross J, Harrison S et al.   Temporal lobe surgery in childhood and neuroanatomical predictors of long-term declarative memory outcome. Brain . 2015; 138( 1): 80- 93. Google Scholar CrossRef Search ADS PubMed  COMMENTS The authors present a retrospective, single-center, “real world” review of 183 children undergoing craniotomy and temporal lobe resection for drug-resistant epilepsy, the largest pediatric series in the literature. They compare their results to an extensive review of the world literature. Overall, the seizure outcomes were excellent, with only 5.4% of patients not experiencing meaningful seizure reduction, regardless of seizure type or imaging findings and with a variety of surgical strategies. With a minimum follow-up of 12 months and a mean follow-up of 42 months, the seizure outcomes were durable over time, especially in patients with an excellent surgical outcome. The authors are to be commended for this important contribution to the growing body of literature demonstrating a high level of treatment efficacy regarding surgery for drug-resistant epilepsy in children. Daxa Patel Robert J. Bollo Salt Lake City, Utah This manuscript is a report of 24 years of experience in temporal lobe epilepsy surgery from a major epilepsy center, with excellent results. The authors report that this is the largest such series to date, including 183 children, with a mean follow-up of 42 months. The vast majority had a good outcome and the neuropsychological outcomes also showed no significant declines after surgery. Complications were within the previously reported ranges. Their major conclusion is that seizure-free outcomes are durable, based on their use of the Engel score at the time of follow-up, as opposed to the time-to-first seizure assessment used in another study which showed a decline in seizure-free durability over time. They also review the literature on this topic. This is a very large series, and a well-written and thoughtful analysis, especially the authors’ detailed discussion of their evolving surgical approach, which is often not included in such series. This aspect has benefit for epilepsy pediatric neurosurgeons. This series describes the unique profile of a cohort of pediatric patients: the majority were over age 12 years, nearly half were tumor patients, few with cortical dysplasia or with intellectual disability, and only a little more than one-quarter had invasive monitoring—a generally more favorable selection of patients. This is unique to temporal lobe epilepsy pediatric surgical patients, and appears distinct from the published series they cite. Howard L. Weiner Houston, Texas The authors present a powerful single-institution review of pediatric temporal lobe epilepsy patients who underwent surgical resection from 1988–2012. The 183 patients reviewed represents nearly 10% of all the published surgical cases published. A little over 25% of the patients underwent invasive intracranial monitoring, although the breakdown of monitoring modality (SEE vs ECOG) was not described. Since the time of this cohort, we have learned that through long-term invasive intracranial monitoring, up to one-third suspected unilateral onset patients, when monitored for a month will have bilateral onset seizures.1 Although at the time, this knowledge for the above patients may not have altered the surgical techniques employed, now responsive neuro-stim (RNS) offers a bilaterally directed therapy. This knowledge of more prevalent bilateral onset than once suspected may allow us to even further improve upon outcomes reported in this cohort. Despite changes in surgical technique over time as described by the authors, these data as presented support the durability of an open resective approach to treat epilepsy of suspected temporal origin epilepsy in the pediatric population. Surgical approaches for treatment of pediatric temporal lobe epilepsy are evolving. The study period spans the introduction of selective laser amygdohippocampectomy (SLAH), responsive neurostimulation (RNS), and repetitive transcranial magnetic stimulation (rTMS) which remain investigational in the pediatric population. As these techniques continue to undergo rigorous evaluation for safety and efficacy, these approaches can be utilized to augment, improve, or some cases replace open surgical options. Increasingly, data suggests the less invasive, SLAH, may render incur fewer memory and speech deficits for our patients than open techniques.2 Further, we recognize that a reduction in seizure frequency or Engel class may not capture the effect on a patient's quality of life. As patients are able to decrease anti-epileptic drug dosing, resultant improvements in memory and mood often follow suit. Even mild reductions in seizure frequency, that allow wean of anti-epileptic drugs, may yield significant improvement in the traditionally more challenging to quantify, quality of life measures. Jonathon J. Parker Gerald Grant Stanford, California 1. King-Stephens D, Mirro E, Weber PB et al.   Lateralization of mesial temporal lobe epilepsy with chronic ambulatory electrocorticography. Epilepsia . 2015; 56( 6): 959- 967. Google Scholar CrossRef Search ADS PubMed  2. Drane DL, Loring DW, Voets NL et al.   Better object recognition and naming outcome with MRI-guided stereotactic laser amygdalohippocampectomy for temporal lobe epilepsy. Epilepsia . 2015; 56( 1): 101- 113. Google Scholar CrossRef Search ADS PubMed  Copyright © 2018 by the Congress of Neurological Surgeons

Journal

NeurosurgeryOxford University Press

Published: Apr 13, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off