Ocular Microtremor in Brain Stem Death

Ocular Microtremor in Brain Stem Death AbstractOBJECTIVEThis study was undertaken to establish whether measurement of ocular microtremor (OMT) activity could be used as a method to establish brain stem death. Presently, the diagnosis of brain stem death can be made using clinical criteria alone. OMT is a high-frequency, low-amplitude physiological tremor of the eye caused by impulses emanating from the brain stem. There have been a number of reports indicating that the recording of OMT may be useful in the assessment of comatose states and in establishing brain stem viability or deathMETHODSWe obtained the OMT recordings of 32 patients suspected of having brain stem death using the piezoelectric strain gauge technique. This method involves mounting the piezoelectric probe in a headset and lowering the rubber-tipped end piece onto the anesthetized scleral surface of the subject. The signal produced is recorded on audiomagnetic tape and later played back and analyzed on an electrocardiographic tape analyzer.RESULTSIn 28 patients, initial clinical assessment confirmed the diagnosis of brain stem death and no OMT activity was recorded from these subjects. In three patients in whom initial clinical assessment demonstrated brain stem function, OMT activity was present; when brain stem death was subsequently diagnosed in these three patients, no OMT activity could be demonstrated. In the remaining patient, two of three OMT recordings demonstrated activity in spite of the absence of clinical evidence of brain stem function. A post mortem revealed bacterial cerebritis in this subject.CONCLUSIONThe results suggest that OMT is a sensitive method of detecting brain stem life and that it could play an important role in the assessment of brain stem death. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neurosurgery Oxford University Press

Ocular Microtremor in Brain Stem Death

Ciaran Bolger, Ph.D., Stana Bojanic, B.Sc., jack Phillips, M.D., Noirin Sheahan, Ph.D., Davis Coakley, M.D., James Malone, Ph.D. Department of Neurosurgery (CB, SB), Frenchay Hospital, Bristol, England; Department of Neurosurgery, Beaumont Hospital (JP), Dublin, Ireland; and Department of Medical Physics (NS, JM), Mercer's Institute for Research on Ageing (DC), Dublin, Ireland OBJECTIVE: This study was undertaken to establish whether measurement of ocular microtremor (OMT) activity could be used as a method to establish brain stem death. Presently, the diagnosis of brain stem death can be made using clinical criteria alone. OMT is a high-frequency, low-amplitude physiological tremor of the eye caused by impulses emanating from the brain stem. There have been a number of reports indicating that the recording of OMT may be useful in the assessment of comatose states and in establishing brain stem viability or death. METHODS: We obtained the OMT recordings of 32 patients suspected of having brain stem death using the piezoelectric strain gauge technique. This method involves mounting the piezoelectric probe in a headset and lowering the rubber-tipped end piece onto the anesthetized scleral surface of the subject. The signal produced is recorded on audiomagnetic tape and later played back and analyzed on an electrocardiographic tape analyzer. RESULTS: In 28 patients, initial clinical assessment confirmed the diagnosis of brain stem death and no OMT activity was recorded from these subjects. In three patients in whom initial clinical assessment demonstrated brain stem function, OMT activity was present; when brain stem death was subsequently diagnosed in these three patients, no OMT activity could be demonstrated. In the remaining patient, two of three OMT recordings demonstrated activity in spite of the absence of clinical evidence of brain stem function. A post mortem revealed bacterial cerebritis in this subject. CONCLUSION: The results suggest that OMT is a...
Loading next page...
 
/lp/ou_press/ocular-microtremor-in-brain-stem-death-zXxDDm9jri
Publisher
Congress of Neurological Surgeons
Copyright
© Published by Oxford University Press.
ISSN
0148-396X
eISSN
1524-4040
D.O.I.
10.1097/00006123-199906000-00024
Publisher site
See Article on Publisher Site

Abstract

AbstractOBJECTIVEThis study was undertaken to establish whether measurement of ocular microtremor (OMT) activity could be used as a method to establish brain stem death. Presently, the diagnosis of brain stem death can be made using clinical criteria alone. OMT is a high-frequency, low-amplitude physiological tremor of the eye caused by impulses emanating from the brain stem. There have been a number of reports indicating that the recording of OMT may be useful in the assessment of comatose states and in establishing brain stem viability or deathMETHODSWe obtained the OMT recordings of 32 patients suspected of having brain stem death using the piezoelectric strain gauge technique. This method involves mounting the piezoelectric probe in a headset and lowering the rubber-tipped end piece onto the anesthetized scleral surface of the subject. The signal produced is recorded on audiomagnetic tape and later played back and analyzed on an electrocardiographic tape analyzer.RESULTSIn 28 patients, initial clinical assessment confirmed the diagnosis of brain stem death and no OMT activity was recorded from these subjects. In three patients in whom initial clinical assessment demonstrated brain stem function, OMT activity was present; when brain stem death was subsequently diagnosed in these three patients, no OMT activity could be demonstrated. In the remaining patient, two of three OMT recordings demonstrated activity in spite of the absence of clinical evidence of brain stem function. A post mortem revealed bacterial cerebritis in this subject.CONCLUSIONThe results suggest that OMT is a sensitive method of detecting brain stem life and that it could play an important role in the assessment of brain stem death.

Journal

NeurosurgeryOxford University Press

Published: Jun 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off