Myofascial loads can occur without fascicle length changes

Myofascial loads can occur without fascicle length changes Abstract Many studies have shown that connective tissue linkages can transmit force between synergistic muscles and that such force transmission depends on the position of these muscles relative to each other and on properties of their intermuscular connective tissues. Moving neighboring muscles has been reported to cause longitudinal deformations within passive muscles held at a constant muscle-tendon unit (MTU) length (e.g. soleus, SO), but muscle forces were not directly measured. Deformations do not provide a direct measure of the force transmitted between muscles. We combined two different muscle preparations to assess whether myofascial loads exerted by neighboring muscles result in length changes of SO fascicles. We investigated the effects of proximal MTU length changes of two-joint gastrocnemius (GA) and plantaris (PL) muscles on the fascicle length of the one-joint SO muscle within (1) an intact muscle compartment and (2) a disrupted compartment that allowed measurements of fascicle length and distal tendon force of SO simultaneously. SO muscle bellies of Wistar rats (n=5) were implanted with sonomicrometry crystals. In three animals, connectivity between SO and GA+PL was enhanced. Measurements were performed before and during maximal excitation of all plantar flexor muscles. In both setups, MTU length of GA+PL did not affect the length of SO fascicles, neither during passive nor active conditions. However, lengthening the MTU of GA+PL increased distal tendon force of SO by 43.3-97.8% (p < 0.001) and 27.5-182.6% (p < 0.001), respectively. This indicates that substantial myofascial force transmission between SO and synergistic muscle can occur via a connective tissue network running parallel to the series of SO sarcomeres without substantial length changes of SO fascicles. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Integrative and Comparative Biology Oxford University Press

Myofascial loads can occur without fascicle length changes

Loading next page...
 
/lp/ou_press/myofascial-loads-can-occur-without-fascicle-length-changes-rJJJOZsf96
Publisher
Oxford University Press
Copyright
© The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
ISSN
1540-7063
eISSN
1557-7023
D.O.I.
10.1093/icb/icy049
Publisher site
See Article on Publisher Site

Abstract

Abstract Many studies have shown that connective tissue linkages can transmit force between synergistic muscles and that such force transmission depends on the position of these muscles relative to each other and on properties of their intermuscular connective tissues. Moving neighboring muscles has been reported to cause longitudinal deformations within passive muscles held at a constant muscle-tendon unit (MTU) length (e.g. soleus, SO), but muscle forces were not directly measured. Deformations do not provide a direct measure of the force transmitted between muscles. We combined two different muscle preparations to assess whether myofascial loads exerted by neighboring muscles result in length changes of SO fascicles. We investigated the effects of proximal MTU length changes of two-joint gastrocnemius (GA) and plantaris (PL) muscles on the fascicle length of the one-joint SO muscle within (1) an intact muscle compartment and (2) a disrupted compartment that allowed measurements of fascicle length and distal tendon force of SO simultaneously. SO muscle bellies of Wistar rats (n=5) were implanted with sonomicrometry crystals. In three animals, connectivity between SO and GA+PL was enhanced. Measurements were performed before and during maximal excitation of all plantar flexor muscles. In both setups, MTU length of GA+PL did not affect the length of SO fascicles, neither during passive nor active conditions. However, lengthening the MTU of GA+PL increased distal tendon force of SO by 43.3-97.8% (p < 0.001) and 27.5-182.6% (p < 0.001), respectively. This indicates that substantial myofascial force transmission between SO and synergistic muscle can occur via a connective tissue network running parallel to the series of SO sarcomeres without substantial length changes of SO fascicles. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)

Journal

Integrative and Comparative BiologyOxford University Press

Published: Jun 4, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off