Melt Penetration in Oceanic Lithosphere: Li Isotope Records from the Pozantı-Karsantı Ophiolite in Southern Turkey

Melt Penetration in Oceanic Lithosphere: Li Isotope Records from the Pozantı-Karsantı Ophiolite... Abstract Understanding melt penetration in ophiolites is important in revealing the formation and evolution of the oceanic lithosphere, as well as the formation of chromite deposits. We conducted in situ Li isotope analysis of olivine grains from the harzburgite, podiform chromitite and dunite envelope of the mantle sequence, and dunite and wehrlite cumulates from the crustal sequence of the Pozantı-Karsantı ophiolite. Olivine in the different rocks has variable and distinctive Li concentrations (0·95 to 2·01 ppm) and δ7Li isotopic compositions (-5·43 to 16·65 ‰). The olivine in the refractory harzburgite of the Pozantı-Karsantı ophiolite extends from MOR–peridotite-like compositions to lower δ7Li values and higher Li concentrations, suggesting ingressive Li diffusion via melt penetration. The Li isotopic compositions of the olivine in the dunite envelope and podiform chromitite represent the compositions of their parental melts and thus their sources. The dunite envelope has δ7Li values beyond MORB and OIB variations and overlaps the arc lava range, suggesting an affinity with arc magmatism. The podiform chromitite, on the other hand, shows wider δ7Li variation and overall lower values, falling in the ranges of granulite and eclogite. The parental melts of the podiform chromitite might: (1) originate from partial melting of a dehydrated and metamorphosed subducted slab or (2) may initially have had the same isotopic composition as the associated dunite, but later experienced compositional modification by fluids. The Li isotopic compositions of the dunite and wehrlite cumulates fall between the OIB and arc fields, supporting a subduction origin for these ultramafic cumulates and their arc-like parental magmas. The Pozantı-Karsantı ophiolite records various melt penetration agents during its formation and evolution. The melts display progressive compositional variations, mainly between OIB and immature and mature oceanic island arc magmatism, pointing to their correlation with subduction initiation. The distinctive Li isotopic compositions of the Pozantı-Karsantı, Luobusa and Trinity ophiolites suggest that the generation and compositions of penetrating melts in oceanic lithosphere and subsequent formation of chromite deposits are strongly controlled by tectonic setting. Consequently, Li isotope systematics can be used as an indicator of the tectonic setting and mineralization of ophiolites. INTRODUCTION Ophiolites are remnants of ancient oceanic lithosphere and commonly preserve imprints of mantle-derived melt invasion and differentiation (e.g. Pearce et al., 1984; Aitchison et al., 2000). The melt imprints occur in a variety of forms, such as lavas and intrusions in the crust and ultramafic veins and lenses in the mantle sequence of ophiolites (e.g. Dilek & Furnes, 2009, 2011). They are directly linked to the generation and evolution of the oceanic lithosphere as well as to the formation of chromite deposits (Ballhaus, 1998; Rollinson, 2008; Arai & Miura, 2016). In general, supra-subduction zone (SSZ) ophiolites are known to have experienced significant melt penetration relative to mid-ocean ridge (MOR) ophiolites, resulting in the formation of high-Cr chromite deposits compared to high-Al chromite deposits in the latter (Pearce et al., 1984; Zhou et al., 1994, 1998, 2014). The occurrence of chromite deposits is also different at different structural levels within ophiolites, namely, podiform deposits occur in the mantle peridotites, whereas stratiform-like deposits occur in crustal cumulate zones (Paktunc, 1990; Saka et al., 2014; Arai & Miura, 2016). Therefore, the identification of the nature and origin of the melts penetrating a given ophiolite is critical in addressing the tectonic setting in which the ophiolite formed, as well as the type and scale of associated mineralization. However, the genetic relationship between melt penetration occurring at different levels of ophiolites is usually not fully constrained, partly due to isotopic data not being obtained from rocks in the mantle sequence. Olivine is the major constituent mineral in both mantle rocks and crustal cumulates. It is the dominant mineral phase of dunite that envelopes a podiform chromite body, or is interlayered with stratiform-like chromitite (Paktunc, 1990; Arai & Miura, 2016). Given that the mineral assemblage in chromitites consists only of olivine + chromite in varying modal proportions, and that chromite structurally contains minor or no Li, the Li contents and isotopic compositions in olivine in chromitites are representative of the whole-rock samples (Su et al., 2016). Olivine can preserve primary Li elemental and isotopic compositions which may be used to trace high-temperature processes (Su et al., 2014; Tang et al., 2014). This is due to the conspicuously slower diffusion rate of Li in olivine than in pyroxene (Dohmen et al., 2010) and the immunity of Li in olivine to sub-solidus Fe-Mg exchange between olivine and chromite (Bai et al., 2017; Su et al., 2017). Lithium behaves as a moderately incompatible element during high-temperature magmatic processes (Brenan et al., 1998; Woodland et al., 2004); however, no significant Li isotope fractionation is believed to occur during partial melting and fractional crystallization (Tomascak et al., 1999; Bryant et al., 2004; Teng et al., 2006). Lithium isotope systematics have, thus, been used to constrain the nature and origin of magmatism (e.g. Chan et al., 2002; Elliott et al., 2006) and melt infiltration (Decitre et al., 2002; Lundstrom et al., 2005; Gao et al., 2011; Su et al., 2016) that have contributed to the evolution of the oceanic lithosphere. This study presents in situ Li isotopic data for olivine from ultramafic rocks and associated chromitites from the Pozantı-Karsantı ophiolite in southern Turkey. We examine the behavior of Li and its isotopes during serpentinization, and subsequently attempt to constrain the nature, origin and genetic relationships among the parental melts responsible for the formation of podiform chromitites, the dunite envelope and crustal cumulates. GEOLOGY OF THE POZANTI-KARSANTI OPHIOLITE AND SAMPLE COLLECTION The Pozantı-Karsantı ophiolite, exposed in the eastern Tauride belt, is located 60 km north of the city of Adana in southern Turkey (Fig. 1a). It covers an area of approximately 1300 km2, with a length of 100 km and width of 30 km (Fig. 1b). The ophiolite is associated with an ophiolitic mélange and its metamorphic sole rests in tectonic contact with underlying platform carbonates of Late Devonian to Early Cretaceous age (Fig. 1c;Dilek et al., 1999; Robertson, 2002). The ophiolite sequence consists mainly of tectonized peridotites, mafic-ultramafic cumulates and isotropic gabbros (Fig. 1c). The ultramafic cumulates occur as a large massif of dunite and wehrlite (Figs 1b, 2a), with minor layers of dunite and clinopyroxenite (Fig. 2b). The occurrence of rhythmic layers of chromitite and dunite in the ultramafic cumulates (Fig. 2c) is inferred to be close to the petrological Moho (Fig. 1c;Parlak et al., 2000, 2002). The chromitite in the mantle harzburgite typically has a podiform structure (Fig. 2d) and is variable in morphology, from massive and disseminated to nodular and banded. Previous studies have suggested that the chromitite is of the high-Cr variety formed from boninitic melts (Avcı et al., 2017). Fig. 1. View largeDownload slide (a) Distribution of ophiolites in Turkey (after Robertson, 2002). (b) Geological map (after GDMRE, 2002). (c) Vertical section (after Dilek & Thy, 2009; Parlak et al., 2009) of the Pozantı-Karsantı ophiolite. Fig. 1. View largeDownload slide (a) Distribution of ophiolites in Turkey (after Robertson, 2002). (b) Geological map (after GDMRE, 2002). (c) Vertical section (after Dilek & Thy, 2009; Parlak et al., 2009) of the Pozantı-Karsantı ophiolite. Fig. 2. View largeDownload slide Field outcrops and petrological features of the studied samples from mantle-crust transition zone (a–c) and mantle sequence (d) of the Pozantı-Karsantı ophiolite. (a) Field relations between dunite and wehrlite cumulates. (b) Inter-layered dunite and clinopyroxenite cumulates (1·5 cm diameter of coin used for scale). (c) Inter-layered dunite and chromitite. (d) Podiform chromitite with very thin dunite envelope in harzburgite host. Fig. 2. View largeDownload slide Field outcrops and petrological features of the studied samples from mantle-crust transition zone (a–c) and mantle sequence (d) of the Pozantı-Karsantı ophiolite. (a) Field relations between dunite and wehrlite cumulates. (b) Inter-layered dunite and clinopyroxenite cumulates (1·5 cm diameter of coin used for scale). (c) Inter-layered dunite and chromitite. (d) Podiform chromitite with very thin dunite envelope in harzburgite host. Swarms of gabbro and diabase dykes cut the Pozantı-Karsantı ophiolitic units at different structural levels, as well as the metamorphic sole (Lytwyn & Casey, 1995; Dilek et al., 1999; Parlak, 2000; Lian et al., 2017a). Geochronological studies indicate ages of 107–83 Ma for the metamorphic sole (Thuizat et al., 1981; Dilek et al., 1999; Çelik, 2008) and 92–87 Ma for the mafic dykes and mafic cumulates (Dilek et al., 1999; Lian et al., 2017a). These results suggest that the ophiolite formed during the Late Cretaceous, presumably in the Neotethys Ocean (Polat et al., 1996; Robertson, 2002; Dilek & Furnes, 2009). The metamorphic sole, mafic cumulates and dyke swarm all display transitional geochemical compositions between MORB and typical island arc lavas (Lytwyn & Casey, 1995; Parlak et al., 2002; Çelik, 2007; Lian et al., 2017a). This has led to ongoing debates about the tectonic setting of the Pozantı-Karsantı ophiolite. Based on its SSZ nature, some authors have proposed that the ophiolite resulted from immature island arc magmatism during subduction initiation (e.g. Pearce et al., 1984; Parlak et al., 2002; Dilek & Furnes, 2009), whereas others suggested that it formed along a mid-ocean ridge north of the Tauride Platform and constituted part of the forearc mantle wedge (e.g. Lytwyn & Casey, 1995; Polat et al., 1996; Saka et al., 2014). In this study, 75 samples were collected from different units of the Pozantı-Karsantı ophiolite. After screening, 15 least-altered samples were selected for mineral separation and chemical analysis. The sample set includes three harzburgites, three dunites and five chromitite samples from the mantle sequence, and three dunite and one wehrlite samples from the ultramafic cumulate unit. No fresh olivine was found in the chromitite samples from the stratiform layers. The geographic locations and structural levels of these samples are given in Table 1. Table 1: GPS locations of the studied samples collected from the Pozantı-Karsantı ophiolite, south Turkey Sample  Rock type  Latitude  Longitude  Comment  PK14-35  Harzburgite  37°37′45″N  35°29′05″E  Mantle harzburgite hosting chromitite  PK14-40  Harzburgite  37°38′58″N  35°29′03″E  Mantle harzburgite hosting chromitite  PK14-05  Harzburgite  37°39′58″N  35°25′13″E  Mantle harzburgite hosting chromitite  PK14-38  Dunite  37°38′58″N  35°29′03″E  Mantle dunite envelope of chromitite  PK14-20  Dunite  37°36′38″N  35°28′43″E  Mantle dunite envelope of chromitite  PK14-54  Dunite  37°36′28″N  35°26′11″E  Mantle dunite envelope of chromitite  PK14-16  Dunite  37°37′06″N  35°23′39″E  Cumulate in mantle-crust transition zone  PK14-70  Dunite  37°36′14″N  35°24′24″E  Cumulate in mantle-crust transition zone  PK14-72  Dunite  37°36′14″N  35°24′24″E  Cumulate in mantle-crust transition zone  PK14-15  Wehrlite  37°37′06″N  35°23′39″E  Cumulate in mantle-crust transition zone  PK14-46  Disseminated chromitite  37°38′58″N  35°29′03″E  Chromitite body in mantle sequence  PK14-52  Banded chromitite  37°36′28″N  35°26′11″E  Chromitite body in mantle sequence  PK14-75  Banded chromitite  37°36′28″N  35°26′11″E  Chromitite body in mantle sequence  PK14-09  Massive chromitite  37°39′58″N  35°25′13″E  Chromitite body in mantle sequence  PK14-41  Nodular chromitite  37°38′58″N  35°29′03″E  Chromitite body in mantle sequence  Sample  Rock type  Latitude  Longitude  Comment  PK14-35  Harzburgite  37°37′45″N  35°29′05″E  Mantle harzburgite hosting chromitite  PK14-40  Harzburgite  37°38′58″N  35°29′03″E  Mantle harzburgite hosting chromitite  PK14-05  Harzburgite  37°39′58″N  35°25′13″E  Mantle harzburgite hosting chromitite  PK14-38  Dunite  37°38′58″N  35°29′03″E  Mantle dunite envelope of chromitite  PK14-20  Dunite  37°36′38″N  35°28′43″E  Mantle dunite envelope of chromitite  PK14-54  Dunite  37°36′28″N  35°26′11″E  Mantle dunite envelope of chromitite  PK14-16  Dunite  37°37′06″N  35°23′39″E  Cumulate in mantle-crust transition zone  PK14-70  Dunite  37°36′14″N  35°24′24″E  Cumulate in mantle-crust transition zone  PK14-72  Dunite  37°36′14″N  35°24′24″E  Cumulate in mantle-crust transition zone  PK14-15  Wehrlite  37°37′06″N  35°23′39″E  Cumulate in mantle-crust transition zone  PK14-46  Disseminated chromitite  37°38′58″N  35°29′03″E  Chromitite body in mantle sequence  PK14-52  Banded chromitite  37°36′28″N  35°26′11″E  Chromitite body in mantle sequence  PK14-75  Banded chromitite  37°36′28″N  35°26′11″E  Chromitite body in mantle sequence  PK14-09  Massive chromitite  37°39′58″N  35°25′13″E  Chromitite body in mantle sequence  PK14-41  Nodular chromitite  37°38′58″N  35°29′03″E  Chromitite body in mantle sequence  Table 1: GPS locations of the studied samples collected from the Pozantı-Karsantı ophiolite, south Turkey Sample  Rock type  Latitude  Longitude  Comment  PK14-35  Harzburgite  37°37′45″N  35°29′05″E  Mantle harzburgite hosting chromitite  PK14-40  Harzburgite  37°38′58″N  35°29′03″E  Mantle harzburgite hosting chromitite  PK14-05  Harzburgite  37°39′58″N  35°25′13″E  Mantle harzburgite hosting chromitite  PK14-38  Dunite  37°38′58″N  35°29′03″E  Mantle dunite envelope of chromitite  PK14-20  Dunite  37°36′38″N  35°28′43″E  Mantle dunite envelope of chromitite  PK14-54  Dunite  37°36′28″N  35°26′11″E  Mantle dunite envelope of chromitite  PK14-16  Dunite  37°37′06″N  35°23′39″E  Cumulate in mantle-crust transition zone  PK14-70  Dunite  37°36′14″N  35°24′24″E  Cumulate in mantle-crust transition zone  PK14-72  Dunite  37°36′14″N  35°24′24″E  Cumulate in mantle-crust transition zone  PK14-15  Wehrlite  37°37′06″N  35°23′39″E  Cumulate in mantle-crust transition zone  PK14-46  Disseminated chromitite  37°38′58″N  35°29′03″E  Chromitite body in mantle sequence  PK14-52  Banded chromitite  37°36′28″N  35°26′11″E  Chromitite body in mantle sequence  PK14-75  Banded chromitite  37°36′28″N  35°26′11″E  Chromitite body in mantle sequence  PK14-09  Massive chromitite  37°39′58″N  35°25′13″E  Chromitite body in mantle sequence  PK14-41  Nodular chromitite  37°38′58″N  35°29′03″E  Chromitite body in mantle sequence  Sample  Rock type  Latitude  Longitude  Comment  PK14-35  Harzburgite  37°37′45″N  35°29′05″E  Mantle harzburgite hosting chromitite  PK14-40  Harzburgite  37°38′58″N  35°29′03″E  Mantle harzburgite hosting chromitite  PK14-05  Harzburgite  37°39′58″N  35°25′13″E  Mantle harzburgite hosting chromitite  PK14-38  Dunite  37°38′58″N  35°29′03″E  Mantle dunite envelope of chromitite  PK14-20  Dunite  37°36′38″N  35°28′43″E  Mantle dunite envelope of chromitite  PK14-54  Dunite  37°36′28″N  35°26′11″E  Mantle dunite envelope of chromitite  PK14-16  Dunite  37°37′06″N  35°23′39″E  Cumulate in mantle-crust transition zone  PK14-70  Dunite  37°36′14″N  35°24′24″E  Cumulate in mantle-crust transition zone  PK14-72  Dunite  37°36′14″N  35°24′24″E  Cumulate in mantle-crust transition zone  PK14-15  Wehrlite  37°37′06″N  35°23′39″E  Cumulate in mantle-crust transition zone  PK14-46  Disseminated chromitite  37°38′58″N  35°29′03″E  Chromitite body in mantle sequence  PK14-52  Banded chromitite  37°36′28″N  35°26′11″E  Chromitite body in mantle sequence  PK14-75  Banded chromitite  37°36′28″N  35°26′11″E  Chromitite body in mantle sequence  PK14-09  Massive chromitite  37°39′58″N  35°25′13″E  Chromitite body in mantle sequence  PK14-41  Nodular chromitite  37°38′58″N  35°29′03″E  Chromitite body in mantle sequence  ANALYTICAL METHODS Li isotope analysis Olivine grains were handpicked under a binocular microscope, and together with olivine standard 06JY31OL were mounted on an epoxy mount. The mount was then polished to expose the crystals as shown in Figure 3. Pre-analytical transmitted and reflected light images of all the olivine grains were obtained for correct identification of the analyzed grains. To reveal the spatial variations in Li concentrations and Li isotopic compositions, a thin section was used for sample PK14-41. The samples were vacuum-coated with high-purity gold and analyzed using Cameca IMS 1280HR SIMS at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS). The O- primary ion beam was accelerated at 13 kV, with an intensity of about 15 to 30 nA. The elliptical spot was approximately 20 × 30 μm in size. Positive secondary ions were measured on an ion multiplier in pulse counting mode, with a mass resolution (M/DM) of 1500 and an energy slit open at 40 eV without any energy offset. A 60-second pre-sputtering with raster was applied before analysis. The secondary ion beam position in apertures, as well as the magnetic field and the energy offset, were automatically centred before each measurement. Eighty cycles were measured with counting times of 7 and 2 seconds for 6Li and 7Li, respectively. The measured δ7Li values are given as δ7Li ([(7Li/6Li)sample/(7Li/6Li)L-SVEC−1] × 1000) relative to units of the standard NIST SRM 8545 (L-SVEC) with 7Li/6Li of 12·0192. The instrumental mass fractionation is expressed in △i = δ7LiSIMS−δ7LiMC-ICPMS. The olivine standard 06JY31OL with an Mg# of 91·2, Li concentration of 2·70 ± 0·60 ppm and δ7Li of 4·51 ± 0·33‰ (Su et al., 2015) was used as a standard; 21 analyses of the standard in this study yielded a homogeneous Li isotopic composition with an instrumental mass fractionation of △i = 1·82 ± 0·30‰ (1SD). Lithium concentration of the samples was calculated on the basis of 7Li+ count rates (cps/nA) relative to the standard. The detection limit of Li concentration measurements is <1 ppb and uncertainty is mostly <0·90 ppm (1σ). The internal errors of the Li isotopic compositions for both the standard and the olivine samples are less than 1·20‰ (1se), while internal errors for serpentine are less than 2·20‰. Matrix effects, in which δ7Li increases by 1·0‰ for each mole percent decrease in the Fo content of olivine (Su et al., 2015), were considered for calibration. Fig. 3. View largeDownload slide Scanned image of a mount showing olivine separates from the Pozantı-Karsantı ophiolitic rocks with an olivine standard for in situ Li isotope analysis. Fig. 3. View largeDownload slide Scanned image of a mount showing olivine separates from the Pozantı-Karsantı ophiolitic rocks with an olivine standard for in situ Li isotope analysis. Major element analysis Major element compositions of minerals were determined by wavelength dispersive spectrometry using a JEOL JXA8100 electron probe microanalyzer (EPMA) at the IGGCAS. Analytical spots were located close to the previous SIMS analytical spots, and the analysis was conducted at the operating conditions of 5 μm beam diameter, 10 nA beam current, 15 kV accelerating voltage and 10–30 s counting time on peak. Natural (jadeite [NaAlSi2O6] for Na, Al and Si, rhodonite [MnSiO3] for Mn, sanidine [KAlSi3O8] for K, garnet [Fe3Al2Si3O12] for Fe, Cr-diopside [(Mg, Cr)CaSi2O6] for Ca, olivine [(Mg, Fe)2SiO4] for Mg and synthetic (rutile for Ti, 99·7% Cr2O3 for Cr, Ni2Si for Ni) minerals were used for standard calibration, and a program based on the ZAF procedure was used for matrix corrections. Detection limits of the major elements are <180 ppm, and analytical uncertainty is better than 1·5% (1SD). RESULTS The Li concentration, δ7Li and major oxide compositions of olivine in the studied samples from the Pozantı-Karsantı ophiolite are reported in Table 2. In general, the olivine has a Fo content of 88·7–94·9, NiO of 0·11–0·51 wt % and MnO of 0·05–0·20 wt %, all of which fall within the ranges of previously published data (Parlak et al., 2002; Saka et al., 2014; Avcı et al., 2017; Lian et al., 2017b). The Fo contents are well correlated with both NiO and MnO contents (Fig. 4a, b), following the general trends of partial melting and fractional crystallization. Relative to the olivine from the crustal cumulates, the rocks of the mantle sequence display large Fe/Mn variations in olivine at a given Fo (Fig. 4c). Table 2: Li concentration, δ7Li and major oxide compositions of olivine in the Pozantı-Karsantı ophiolite, south Turkey Sample@Spot  Comment  δ7Li  1se  Li  1σ  SiO2  TiO2  Al2O3  Cr2O3  FeO  MnO  MgO  CaO  Na2O  K2O  NiO  Total  Fo  Fe/Mn  PK14-35 Ol@1  Grain 1  5·67  0·85  1·62  0·72  40·6  0·00  0·01  0·00  8·63  0·13  49·3  0·01  0·00  0·00  0·41  99·2  91·1  68·1  PK14-35 Ol@2  Grain 2  5·66  0·80  1·77  0·72  40·6  0·00  0·00  0·00  8·49  0·14  49·3  0·02  0·02  0·01  0·36  98·9  91·3  61·1  PK14-35 Ol@3  Grain 3  4·69  0·88  1·77  0·78  40·8  0·01  0·00  0·00  8·62  0·11  48·8  0·03  0·02  0·02  0·37  98·8  91·1  78·7  PK14-35 Ol@4  Grain 4  1·55  0·99  1·32  0·54  40·7  0·02  0·00  0·03  8·51  0·14  49·4  0·02  0·00  0·00  0·37  99·3  91·3  59·5  PK14-35 Ol@5  Grain 5  2·98  0·80  1·75  0·71  40·4  0·00  0·00  0·00  8·50  0·13  49·5  0·03  0·00  0·02  0·34  98·9  91·3  66·5  PK14-35 Ol@6  Grain 6  4·12  0·73  1·81  0·77  40·8  0·00  0·00  0·01  8·64  0·13  49·4  0·03  0·00  0·00  0·39  99·4  91·1  66·6  PK14-35 Ol@7  Grain 7  0·33  0·81  1·93  0·77  40·5  0·04  0·01  0·01  8·62  0·14  49·4  0·02  0·00  0·00  0·41  99·2  91·2  62·5  PK14-40 Ol@1  Grain 1  4·18  0·97  1·72  0·68  40·9  0·00  0·00  0·00  8·34  0·12  49·4  0·01  0·00  0·01  0·39  99·2  91·4  66·9  PK14-40 Ol@2  Grain 2  9·39  0·92  1·36  0·66  40·8  0·00  0·00  0·01  8·37  0·10  49·6  0·01  0·04  0·01  0·39  99·4  91·4  86·9  PK14-40 Ol@3  Grain 3  6·30  0·83  1·50  0·61  40·5  0·00  0·00  0·00  8·37  0·11  49·6  0·03  0·01  0·00  0·39  99·0  91·4  77·8  PK14-40 Ol@4  Grain 4  5·05  0·93  1·43  0·63  40·3  0·00  0·00  0·00  8·49  0·15  49·8  0·03  0·00  0·00  0·43  99·1  91·3  57·8  PK14-40 Ol@5  Grain 5  2·50  0·83  1·63  0·70  40·6  0·00  0·00  0·00  8·24  0·10  49·7  0·04  0·00  0·00  0·37  99·1  91·6  81·2  PK14-40 Ol@6  Grain 6  2·30  0·85  1·51  0·60  40·2  0·01  0·00  0·00  8·26  0·11  49·7  0·03  0·03  0·00  0·39  98·8  91·6  74·1  PK14-40 Ol@7  Grain 7  7·11  0·78  1·41  0·56  40·4  0·00  0·00  0·03  8·39  0·11  49·5  0·03  0·00  0·01  0·35  98·9  91·4  73·2  PK14-05 Ol@1  Grain 1  2·58  0·80  1·73  1·02  40·9  0·00  0·00  0·00  8·34  0·11  49·8  0·02  0·00  0·02  0·41  99·6  91·5  72·1  PK14-05 Ol@2  Grain 2  6·87  0·75  1·72  1·09  40·7  0·00  0·00  0·00  8·49  0·14  49·9  0·02  0·01  0·01  0·37  99·7  91·4  62·0  PK14-05 Ol@3  Grain 3  10·88  0·67  1·71  1·31  41·1  0·00  0·00  0·00  8·30  0·13  49·0  0·02  0·00  0·00  0·37  100  91·4  62·5  PK14-05 Ol@4  Grain 4  9·66  0·66  1·57  1·25  41·0  0·00  0·05  0·01  8·55  0·13  49·8  0·03  0·00  0·00  0·40  100  91·3  67·5  PK14-05 Ol@5  Grain 5  3·64  0·54  1·89  1·27  41·2  0·00  0·00  0·00  8·50  0·14  49·5  0·02  0·00  0·00  0·44  99·9  91·3  58·2  PK14-16 Ol@1  Grain 1 rim  13·00  0·72  1·46  0·82  40·4  0·00  0·00  0·01  10·9  0·16  47·9  0·04  0·00  0·02  0·17  99·6  88·8  66·0  PK14-16 Ol@2  Grain 1 core  14·65  0·72  1·50  0·85  40·8  0·00  0·00  0·00  11·0  0·17  47·8  0·05  0·01  0·01  0·18  100  88·6  66·0  PK14-16 Ol@3  Grain 2  11·54  0·59  1·66  0·94  40·3  0·01  0·00  0·00  10·8  0·18  48·3  0·03  0·00  0·00  0·16  99·7  88·9  58·6  PK14-16 Ol@4  Grain 3 rim  8·84  0·72  1·70  0·94  39·8  0·02  0·00  0·00  10·8  0·18  47·7  0·02  0·00  0·01  0·20  98·8  88·8  60·4  PK14-16 Ol@5  Grain 3 mantle  9·58  0·80  1·57  0·90  39·6  0·00  0·00  0·01  11·0  0·19  47·9  0·04  0·24  0·05  0·15  99·2  88·7  56·3  PK14-16 Ol@6  Grain 3 core  11·67  0·75  1·53  0·88  39·9  0·01  0·00  0·00  10·8  0·16  47·9  0·01  0·01  0·00  0·11  99·0  88·8  66·9  PK14-16 Ol@7  Grain 3 core  10·80  0·71  1·50  0·84  40·0  0·00  0·00  0·00  10·8  0·16  48·1  0·00  0·00  0·01  0·20  99·4  88·9  68·0  PK14-16 Ol@8  Grain 3 mantle  9·33  0·77  1·48  0·80  39·8  0·02  0·00  0·00  10·8  0·19  48·1  0·02  0·00  0·00  0·15  99·2  88·9  56·8  PK14-70 Ol@1  Grain 1  14·12  0·60  1·56  1·18  40·7  0·02  0·00  0·01  10·6  0·18  48·0  0·13  0·01  0·00  0·29  99·9  89·1  59·5  PK14-70 Ol@2  Grain 2  8·53  0·76  1·58  1·04  40·9  0·00  0·00  0·01  10·4  0·16  48·6  0·13  0·01  0·00  0·23  100  89·4  64·5  PK14-70 Ol@3  Grain 3 rim  11·54  0·70  1·59  1·09  40·6  0·00  0·01  0·03  10·3  0·18  48·9  0·12  0·00  0·00  0·24  100  89·5  56·7  PK14-70 Ol@4  Grain 3 mantle  10·85  0·68  1·61  1·02  40·5  0·01  0·00  0·01  10·4  0·15  48·9  0·10  0·01  0·01  0·26  100  89·4  68·4  PK14-70 Ol@5  Grain 3 core  10·41  0·52  1·58  0·95  40·2  0·00  0·00  0·03  10·4  0·16  48·3  0·12  0·03  0·00  0·23  99·5  89·3  64·2  PK14-70 Ol@6  Grain 4 rim  13·59  0·72  1·59  0·98  40·3  0·00  0·00  0·02  10·1  0·16  48·5  0·12  0·00  0·00  0·29  99·5  89·6  62·9  PK14-70 Ol@7  Grain 4 core  16·65  0·69  1·62  0·94  40·7  0·01  0·00  0·00  10·2  0·18  48·3  0·11  0·01  0·01  0·22  99·7  89·5  57·4  PK14-38 Ol@1  Grain 1  6·73  0·88  1·58  0·64  41·0  0·02  0·00  0·01  8·70  0·15  49·7  0·02  0·02  0·00  0·35  100  91·1  59·2  PK14-38 Ol@2  Grain 2  6·71  0·84  1·55  0·70  40·9  0·03  0·00  0·01  8·92  0·13  49·7  0·04  0·02  0·01  0·37  100  90·9  65·6  PK14-38 Ol@3  Grain 3  3·19  0·87  1·59  0·66  40·7  0·00  0·00  0·00  8·70  0·17  49·4  0·05  0·00  0·00  0·42  99·4  91·1  50·5  PK14-38 Ol@4  Grain 4  5·28  0·94  1·72  0·77  40·8  0·00  0·00  0·00  8·73  0·14  49·2  0·03  0·00  0·00  0·34  99·2  91·0  63·3  PK14-38 Ol@5  Grain 5  7·12  0·84  1·43  0·60  40·9  0·00  0·00  0·00  8·83  0·13  49·3  0·03  0·02  0·01  0·40  99·7  91·0  69·6  PK14-38 Ol@6  Grain 6 rim  3·94  0·96  1·74  0·88  40·8  0·02  0·00  0·00  8·73  0·14  48·6  0·05  0·00  0·01  0·36  98·8  90·9  62·3  PK14-38 Ol@7  Grain 6 core  3·66  0·83  1·75  0·89  40·4  0·02  0·00  0·00  8·64  0·12  49·5  0·04  0·02  0·01  0·37  99·1  91·2  71·6  PK14-20 Ol@1  Grain 1  −0·22  0·68  2·06  1·07  41·1  0·00  0·00  0·00  7·75  0·14  50·3  0·05  0·00  0·00  0·36  99·8  92·1  53·8  PK14-20 Ol@2  Grain 2  0·85  0·87  1·91  0·77  41·2  0·03  0·00  0·00  7·61  0·11  50·2  0·04  0·03  0·00  0·39  99·7  92·2  69·4  PK14-20 Ol@3  Grain 3  −0·57  0·75  1·97  0·90  40·9  0·01  0·00  0·02  7·67  0·09  50·4  0·03  0·00  0·00  0·36  99·4  92·2  89·0  PK14-20 Ol@4  Grain 4  10·86  0·80  1·42  0·66  41·1  0·01  0·00  0·02  7·46  0·12  50·2  0·04  0·00  0·00  0·38  99·4  92·4  63·4  PK14-20 Ol@5  Grain 5  7·36  0·86  1·19  0·53  41·1  0·00  0·00  0·00  7·66  0·12  50·3  0·07  0·00  0·01  0·33  99·6  92·2  61·9  PK14-20 Ol@6  Grain 6  −0·29  0·86  2·10  1·03  40·9  0·00  0·00  0·00  7·79  0·08  50·1  0·03  0·02  0·01  0·36  99·3  92·1  96·0  PK14-20 Ol@7  Grain 7  3·72  0·76  1·73  0·85  40·5  0·03  0·00  0·02  7·74  0·11  50·3  0·03  0·04  0·00  0·34  99·1  92·1  72·0  PK14-54 Ol@1  Grain 1  5·80  0·86  1·25  0·51  41·3  0·00  0·00  0·03  6·31  0·09  50·4  0·08  0·03  0·02  0·44  98·7  93·5  71·5  PK14-54 Ol@2  Grain 2  6·92  0·91  1·04  0·46  40·7  0·02  0·01  0·00  6·35  0·10  50·9  0·05  0·03  0·00  0·44  98·6  93·5  65·2  PK14-54 Ol@3  Grain 3  8·08  1·12  1·03  0·36  41·2  0·00  0·00  0·00  6·56  0·09  51·1  0·10  0·00  0·01  0·40  99·4  93·3  71·8  PK14-54 Ol@4  Grain 4  6·00  1·12  1·19  0·47  41·1  0·00  0·00  0·00  6·24  0·09  50·6  0·08  0·00  0·01  0·40  98·6  93·6  66·9  PK14-54 Ol@5  Grain 5  9·85  1·05  1·21  0·54  41·2  0·02  0·00  0·00  6·26  0·11  50·8  0·03  0·01  0·01  0·43  98·9  93·6  54·1  PK14-54 Ol@6  Grain 6  4·10  0·80  1·72  0·66  41·0  0·00  0·00  0·05  6·34  0·11  50·9  0·06  0·00  0·01  0·36  98·9  93·5  56·8  PK14-54 Ol@7  Grain 7  11·45  1·08  0·95  0·43  41·0  0·00  0·00  0·00  6·11  0·10  51·4  0·04  0·00  0·00  0·43  99·1  93·8  58·5  PK14-72 Ol@1  Grain 1 rim  12·19  0·93  1·24  0·67  40·3  0·01  0·00  0·02  10·2  0·16  48·2  0·10  0·01  0·00  0·22  99·1  89·5  64·2  PK14-72 Ol@02  Grain 1 mantle  11·47  0·95  1·28  0·55  40·4  0·01  0·01  0·00  10·3  0·15  48·4  0·11  0·02  0·00  0·25  99·6  89·5  65·7  PK14-72 Ol@03  Grain 1 core  12·74  0·89  1·24  0·53  40·2  0·01  0·00  0·00  10·3  0·18  48·3  0·12  0·01  0·01  0·31  99·6  89·4  56·1  PK14-72 Ol@04  Grain 1 mantle  10·16  0·82  1·38  0·57  40·2  0·04  0·00  0·00  10·3  0·17  48·3  0·12  0·01  0·02  0·27  99·5  89·4  59·5  PK14-72 Ol@05  Grain 2 rim  10·39  0·88  1·28  0·63  40·7  0·00  0·00  0·00  10·4  0·16  48·3  0·11  0·03  0·00  0·25  99·9  89·4  65·5  PK14-72 Ol@06  Grain 2 mantle  11·20  0·89  1·24  0·62  40·4  0·01  0·00  0·00  10·3  0·17  48·2  0·11  0·03  0·02  0·22  99·4  89·4  58·8  PK14-72 Ol@07  Grain 2 mantle  11·04  0·78  1·25  0·57  40·5  0·00  0·00  0·00  10·3  0·19  48·0  0·14  0·02  0·02  0·24  99·5  89·4  52·8  PK14-72 Ol@08  Grain 2 core  13·41  0·92  1·27  0·46  40·4  0·00  0·00  0·00  10·3  0·17  47·9  0·14  0·01  0·02  0·27  99·2  89·3  60·5  PK14-72 Ol@09  Grain 3  7·23  0·83  1·38  0·59  40·7  0·00  0·00  0·00  10·4  0·18  47·9  0·10  0·01  0·00  0·24  99·5  89·2  57·3  PK14-72 Ol@10  Grain 4  12·08  0·90  1·42  0·56  39·7  0·00  0·00  0·00  10·2  0·15  48·4  0·11  0·01  0·00  0·26  98·9  89·5  65·2  PK14-72 Ol@11  Grain 5  10·97  1·09  1·13  0·52  40·0  0·02  0·00  0·00  10·2  0·17  48·3  0·11  0·03  0·02  0·24  99·1  89·5  58·2  PK14-15 Ol@1  Grain 1  12·60  0·93  1·39  0·60  40·2  0·00  0·00  0·00  10·9  0·18  47·7  0·02  0·01  0·01  0·16  99·1  88·8  58·2  PK14-15 Ol@2  Grain 2  12·48  1·06  1·34  0·60  40·6  0·02  0·00  0·02  10·9  0·19  48·4  0·02  0·01  0·00  0·17  99·1  88·9  57·0  PK14-15 Ol@3  Grain 3  10·96  1·04  1·51  0·72  40·5  0·01  0·00  0·02  11·0  0·16  48·1  0·01  0·00  0·01  0·20  100  88·7  68·7  PK14-15 Ol@4  Grain 4 rim  10·87  0·98  1·72  0·70  40·3  0·00  0·00  0·02  10·8  0·16  47·1  0·05  0·00  0·01  0·18  98·6  88·7  66·3  PK14-15 Ol@5  Grain 4 mantle  11·59  0·99  1·45  0·67  40·2  0·00  0·00  0·00  10·9  0·18  47·3  0·04  0·01  0·02  0·16  98·8  88·7  61·0  PK14-15 Ol@6  Grain 4 core  14·56  0·84  1·48  0·64  40·2  0·04  0·00  0·00  10·9  0·20  47·3  0·05  0·01  0·02  0·19  98·8  88·7  54·6  PK14-15 Ol@7  Grain 4 mantle  9·57  0·94  1·45  0·65  40·4  0·00  0·00  0·00  10·9  0·17  47·5  0·03  0·00  0·00  0·16  99·2  88·7  64·6  PK14-15 Ol@8  Grain 4 rim  11·53  1·00  1·43  0·58  40·4  0·01  0·00  0·00  10·8  0·17  47·7  0·03  0·04  0·00  0·15  99·3  88·8  63·3  PK14-15 Ol@9  Grain 5  13·20  0·79  1·49  0·64  40·3  0·00  0·00  0·00  10·8  0·20  47·9  0·02  0·02  0·01  0·16  99·4  88·9  54·1  PK14-15 Ol@10  Grain 6  9·01  0·91  1·73  0·70  40·2  0·01  0·00  0·01  10·6  0·18  48·0  0·02  0·00  0·00  0·18  99·3  89·1  59·1  PK14-15 Ol@11  Grain 7  13·07  0·87  1·55  0·57  40·1  0·03  0·00  0·00  10·6  0·15  47·5  0·04  0·01  0·00  0·20  98·7  89·0  69·7  PK14-15 Ol@12  Grain 8  15·11  0·85  1·38  0·46  40·2  0·03  0·00  0·03  11·0  0·18  47·6  0·02  0·00  0·01  0·17  99·3  88·6  61·3  PK14-46 Ol@1  Grain 1  −0·48  0·73  1·62  0·61  41·1  0·00  0·00  0·00  7·40  0·11  50·4  0·00  0·02  0·02  0·41  99·5  92·5  65·1  PK14-46 Ol@2  Grain 2  3·01  0·82  1·53  0·58  40·4  0·00  0·01  0·01  7·39  0·10  50·4  0·02  0·00  0·00  0·47  98·8  92·5  73·6  PK14-46 Ol@3  Grain 3  −0·32  0·71  1·57  0·58  40·7  0·00  0·00  0·01  7·39  0·08  50·5  0·03  0·00  0·00  0·41  99·1  92·5  90·0  PK14-46 Ol@4  Grain 4  −0·57  0·75  1·77  0·63  41·0  0·00  0·00  0·00  7·22  0·09  50·1  0·03  0·00  0·00  0·45  99·0  92·6  78·2  PK14-46 Ol@5  Grain 5  −1·31  0·91  1·50  0·50  40·6  0·00  0·00  0·02  7·38  0·11  50·3  0·06  0·02  0·00  0·43  99·0  92·5  66·2  PK14-46 Ol@6  Grain 6 rim  −0·07  0·79  1·62  0·59  41·2  0·00  0·00  0·01  6·98  0·08  50·1  0·02  0·01  0·00  0·42  98·9  92·8  82·0  PK14-46 Ol@7  Grain 6 mantle  −1·62  0·70  1·75  0·68  41·2  0·00  0·00  0·01  6·95  0·12  50·3  0·03  0·01  0·01  0·45  99·2  92·9  57·1  PK14-46 Ol@8  Grain 6 core  −4·19  0·74  1·73  0·72  41·2  0·01  0·00  0·00  7·23  0·11  50·3  0·03  0·00  0·01  0·39  99·3  92·6  66·6  PK14-46 Ol@9  Grain 6 mantle  −2·55  0·74  1·75  0·71  41·0  0·00  0·00  0·00  7·11  0·11  50·3  0·03  0·00  0·01  0·44  99·0  92·7  62·0  PK14-46 Ol@10  Grain 7  −0·93  0·80  1·48  0·57  40·7  0·03  0·00  0·00  7·23  0·09  50·6  0·04  0·00  0·00  0·42  99·1  92·6  83·9  PK14-52 Ol@1  Grain 1  0·32  0·78  1·67  0·71  41·4  0·00  0·00  0·00  5·48  0·06  51·6  0·07  0·00  0·01  0·49  99·1  94·4  94·7  PK14-52 Ol@2  Grain 2  −1·52  1·02  1·32  0·52  41·5  0·00  0·00  0·00  4·96  0·08  51·6  0·05  0·01  0·00  0·45  98·7  94·9  65·2  PK14-52 Ol@3  Grain 3  −1·58  0·92  1·14  0·44  41·6  0·00  0·00  0·00  5·13  0·09  51·6  0·08  0·01  0·02  0·49  99·0  94·8  55·6  PK14-52 Ol@4  Grain 4  −0·19  0·94  1·28  0·51  41·0  0·00  0·00  0·00  5·15  0·09  51·8  0·08  0·00  0·01  0·51  98·6  94·8  59·1  PK14-52 Ol@5  Grain 5  4·60  0·89  1·07  0·43  41·2  0·01  0·00  0·00  5·43  0·08  51·6  0·09  0·00  0·01  0·46  98·8  94·5  70·4  PK14-52 Ol@6  Grain 6  −3·25  1·01  1·20  0·52  41·2  0·00  0·00  0·00  5·04  0·08  52·0  0·06  0·00  0·02  0·44  98·9  94·9  64·5  PK14-52 Ol@7  Grain 7  −5·43  0·88  1·44  0·69  41·4  0·00  0·00  0·02  5·05  0·06  51·9  0·08  0·01  0·01  0·47  99·0  94·9  80·3  PK14-52 Ol@8  Grain 8  0·56  1·03  1·05  0·42  40·9  0·02  0·00  0·02  5·12  0·07  51·9  0·09  0·03  0·01  0·46  98·6  94·8  74·2  PK14-52 Ol@9  Grain 9  −0·31  0·97  1·27  0·61  41·0  0·01  0·00  0·01  5·03  0·09  52·0  0·08  0·00  0·01  0·50  98·7  94·9  57·0  PK14-52 Ol@10  Grain 10  0·57  0·99  1·22  0·53  41·1  0·00  0·00  0·00  5·40  0·12  51·4  0·04  0·00  0·01  0·45  98·5  94·5  46·3  PK14-75 Ol@1  Grain 1  5·46  0·71  1·42  1·16  41·3  0·00  0·00  0·00  5·08  0·10  52·6  0·08  0·00  0·00  0·50  99·6  94·9  52·7  PK14-75 Ol@2  Grain 2  0·94  0·79  1·21  0·77  41·6  0·00  0·00  0·00  5·13  0·09  52·0  0·08  0·00  0·00  0·50  99·4  94·8  54·3  PK14-75 Ol@3  Grain 3 rim  2·65  0·93  1·11  0·76  41·3  0·04  0·00  0·03  5·18  0·08  52·5  0·08  0·02  0·01  0·44  99·6  94·8  65·5  PK14-75 Ol@4  Grain 3 core  5·11  0·85  1·11  0·70  41·4  0·00  0·00  0·02  5·07  0·05  52·1  0·08  0·00  0·00  0·50  99·2  94·9  96·2  PK14-75 Ol@5  Grain 4 rim  3·28  0·85  1·15  0·76  41·7  0·00  0·00  0·00  5·17  0·07  52·2  0·10  0·00  0·01  0·45  99·8  94·8  78·4  PK14-75 Ol@6  Grain 4 mantle  1·29  0·78  1·27  0·68  41·6  0·04  0·00  0·00  5·30  0·08  52·3  0·08  0·00  0·02  0·48  100  94·7  63·0  PK14-75 Ol@7  Grain 4 core  3·09  0·68  1·27  0·69  41·4  0·00  0·00  0·00  5·18  0·08  52·1  0·12  0·03  0·02  0·48  99·4  94·8  65·5  PK14-09 Ol@1  Grain 1 rim  8·98  0·62  1·41  0·90  41·2  0·00  0·00  0·00  6·28  0·11  50·8  0·11  0·01  0·00  0·43  99·0  93·6  59·0  PK14-09 Ol@2  Grain 1 mantle  8·99  0·90  1·38  0·80  40·6  0·00  0·00  0·00  6·24  0·09  51·1  0·09  0·00  0·01  0·45  98·7  93·6  70·8  PK14-09 Ol@3  Grain 1 core  6·84  0·77  1·50  0·93  40·8  0·01  0·00  0·02  6·31  0·11  50·9  0·13  0·00  0·00  0·42  98·8  93·6  54·6  PK14-09 Ol@4  Grain 2  12·13  0·82  1·26  0·79  41·0  0·00  0·00  0·00  6·22  0·11  51·2  0·11  0·00  0·00  0·43  99·1  93·7  55·3  PK14-09 Ol@5  Grain 3  9·48  0·70  1·14  0·59  40·3  0·00  0·00  0·02  6·13  0·09  51·4  0·12  0·17  0·05  0·45  98·8  93·8  65·7  PK14-09 Ol@6  Grain 4  −0·61  0·68  1·43  0·72  41·1  0·00  0·00  0·00  6·20  0·11  51·3  0·07  0·00  0·01  0·46  99·2  93·7  56·1  PK14-09 Ol@7  Grain 5  1·17  0·81  1·26  0·65  41·5  0·01  0·00  0·01  6·27  0·11  51·1  0·10  0·01  0·00  0·40  99·6  93·6  58·3  PK14-09 Ol@8  Grain 6  5·14  0·98  1·29  0·78  41·2  0·02  0·00  0·00  6·25  0·12  50·9  0·07  0·02  0·00  0·44  99·1  93·6  51·8  PK14-09 Ol@9  Grain 7 rim  14·95  1·00  1·15  0·60  40·9  0·01  0·00  0·00  6·06  0·11  51·1  0·09  0·00  0·00  0·40  98·7  93·8  56·9  PK14-09 Ol@10  Grain 7 core  13·71  0·78  1·25  0·62  40·9  0·01  0·00  0·01  6·10  0·10  51·1  0·14  0·18  0·06  0·48  99·1  93·8  62·0  PK14-41 Serp@1    −23·14  1·76  0·17  0·25  40·5  0·00  0·04  0·06  3·00  0·04  38·8  0·07  0·01  0·00  0·48  83·0  95·9  82·1  PK14-41 Serp@2    −21·80  1·23  0·24  0·12  40·6  0·00  0·03  0·03  3·28  0·04  37·7  0·04  0·02  0·02  0·37  82·2  95·4  79·0  PK14-41 Serp@3    −8·73  1·50  0·18  0·06  42·3  0·00  0·04  0·03  2·92  0·04  38·8  0·07  0·02  0·02  0·15  84·4  96·0  79·9  PK14-41 Serp@4    −12·08  2·19  0·09  0·03  41·0  0·00  0·08  0·01  2·86  0·03  37·6  0·05  0·00  0·02  0·41  82·0  95·9  90·9  PK14-41 Serp@5    −9·72  2·12  0·11  0·08  41·4  0·01  0·06  0·02  2·77  0·06  37·7  0·09  0·02  0·02  0·29  82·4  96·1  47·1  Sample@Spot  Comment  δ7Li  1se  Li  1σ  SiO2  TiO2  Al2O3  Cr2O3  FeO  MnO  MgO  CaO  Na2O  K2O  NiO  Total  Fo  Fe/Mn  PK14-35 Ol@1  Grain 1  5·67  0·85  1·62  0·72  40·6  0·00  0·01  0·00  8·63  0·13  49·3  0·01  0·00  0·00  0·41  99·2  91·1  68·1  PK14-35 Ol@2  Grain 2  5·66  0·80  1·77  0·72  40·6  0·00  0·00  0·00  8·49  0·14  49·3  0·02  0·02  0·01  0·36  98·9  91·3  61·1  PK14-35 Ol@3  Grain 3  4·69  0·88  1·77  0·78  40·8  0·01  0·00  0·00  8·62  0·11  48·8  0·03  0·02  0·02  0·37  98·8  91·1  78·7  PK14-35 Ol@4  Grain 4  1·55  0·99  1·32  0·54  40·7  0·02  0·00  0·03  8·51  0·14  49·4  0·02  0·00  0·00  0·37  99·3  91·3  59·5  PK14-35 Ol@5  Grain 5  2·98  0·80  1·75  0·71  40·4  0·00  0·00  0·00  8·50  0·13  49·5  0·03  0·00  0·02  0·34  98·9  91·3  66·5  PK14-35 Ol@6  Grain 6  4·12  0·73  1·81  0·77  40·8  0·00  0·00  0·01  8·64  0·13  49·4  0·03  0·00  0·00  0·39  99·4  91·1  66·6  PK14-35 Ol@7  Grain 7  0·33  0·81  1·93  0·77  40·5  0·04  0·01  0·01  8·62  0·14  49·4  0·02  0·00  0·00  0·41  99·2  91·2  62·5  PK14-40 Ol@1  Grain 1  4·18  0·97  1·72  0·68  40·9  0·00  0·00  0·00  8·34  0·12  49·4  0·01  0·00  0·01  0·39  99·2  91·4  66·9  PK14-40 Ol@2  Grain 2  9·39  0·92  1·36  0·66  40·8  0·00  0·00  0·01  8·37  0·10  49·6  0·01  0·04  0·01  0·39  99·4  91·4  86·9  PK14-40 Ol@3  Grain 3  6·30  0·83  1·50  0·61  40·5  0·00  0·00  0·00  8·37  0·11  49·6  0·03  0·01  0·00  0·39  99·0  91·4  77·8  PK14-40 Ol@4  Grain 4  5·05  0·93  1·43  0·63  40·3  0·00  0·00  0·00  8·49  0·15  49·8  0·03  0·00  0·00  0·43  99·1  91·3  57·8  PK14-40 Ol@5  Grain 5  2·50  0·83  1·63  0·70  40·6  0·00  0·00  0·00  8·24  0·10  49·7  0·04  0·00  0·00  0·37  99·1  91·6  81·2  PK14-40 Ol@6  Grain 6  2·30  0·85  1·51  0·60  40·2  0·01  0·00  0·00  8·26  0·11  49·7  0·03  0·03  0·00  0·39  98·8  91·6  74·1  PK14-40 Ol@7  Grain 7  7·11  0·78  1·41  0·56  40·4  0·00  0·00  0·03  8·39  0·11  49·5  0·03  0·00  0·01  0·35  98·9  91·4  73·2  PK14-05 Ol@1  Grain 1  2·58  0·80  1·73  1·02  40·9  0·00  0·00  0·00  8·34  0·11  49·8  0·02  0·00  0·02  0·41  99·6  91·5  72·1  PK14-05 Ol@2  Grain 2  6·87  0·75  1·72  1·09  40·7  0·00  0·00  0·00  8·49  0·14  49·9  0·02  0·01  0·01  0·37  99·7  91·4  62·0  PK14-05 Ol@3  Grain 3  10·88  0·67  1·71  1·31  41·1  0·00  0·00  0·00  8·30  0·13  49·0  0·02  0·00  0·00  0·37  100  91·4  62·5  PK14-05 Ol@4  Grain 4  9·66  0·66  1·57  1·25  41·0  0·00  0·05  0·01  8·55  0·13  49·8  0·03  0·00  0·00  0·40  100  91·3  67·5  PK14-05 Ol@5  Grain 5  3·64  0·54  1·89  1·27  41·2  0·00  0·00  0·00  8·50  0·14  49·5  0·02  0·00  0·00  0·44  99·9  91·3  58·2  PK14-16 Ol@1  Grain 1 rim  13·00  0·72  1·46  0·82  40·4  0·00  0·00  0·01  10·9  0·16  47·9  0·04  0·00  0·02  0·17  99·6  88·8  66·0  PK14-16 Ol@2  Grain 1 core  14·65  0·72  1·50  0·85  40·8  0·00  0·00  0·00  11·0  0·17  47·8  0·05  0·01  0·01  0·18  100  88·6  66·0  PK14-16 Ol@3  Grain 2  11·54  0·59  1·66  0·94  40·3  0·01  0·00  0·00  10·8  0·18  48·3  0·03  0·00  0·00  0·16  99·7  88·9  58·6  PK14-16 Ol@4  Grain 3 rim  8·84  0·72  1·70  0·94  39·8  0·02  0·00  0·00  10·8  0·18  47·7  0·02  0·00  0·01  0·20  98·8  88·8  60·4  PK14-16 Ol@5  Grain 3 mantle  9·58  0·80  1·57  0·90  39·6  0·00  0·00  0·01  11·0  0·19  47·9  0·04  0·24  0·05  0·15  99·2  88·7  56·3  PK14-16 Ol@6  Grain 3 core  11·67  0·75  1·53  0·88  39·9  0·01  0·00  0·00  10·8  0·16  47·9  0·01  0·01  0·00  0·11  99·0  88·8  66·9  PK14-16 Ol@7  Grain 3 core  10·80  0·71  1·50  0·84  40·0  0·00  0·00  0·00  10·8  0·16  48·1  0·00  0·00  0·01  0·20  99·4  88·9  68·0  PK14-16 Ol@8  Grain 3 mantle  9·33  0·77  1·48  0·80  39·8  0·02  0·00  0·00  10·8  0·19  48·1  0·02  0·00  0·00  0·15  99·2  88·9  56·8  PK14-70 Ol@1  Grain 1  14·12  0·60  1·56  1·18  40·7  0·02  0·00  0·01  10·6  0·18  48·0  0·13  0·01  0·00  0·29  99·9  89·1  59·5  PK14-70 Ol@2  Grain 2  8·53  0·76  1·58  1·04  40·9  0·00  0·00  0·01  10·4  0·16  48·6  0·13  0·01  0·00  0·23  100  89·4  64·5  PK14-70 Ol@3  Grain 3 rim  11·54  0·70  1·59  1·09  40·6  0·00  0·01  0·03  10·3  0·18  48·9  0·12  0·00  0·00  0·24  100  89·5  56·7  PK14-70 Ol@4  Grain 3 mantle  10·85  0·68  1·61  1·02  40·5  0·01  0·00  0·01  10·4  0·15  48·9  0·10  0·01  0·01  0·26  100  89·4  68·4  PK14-70 Ol@5  Grain 3 core  10·41  0·52  1·58  0·95  40·2  0·00  0·00  0·03  10·4  0·16  48·3  0·12  0·03  0·00  0·23  99·5  89·3  64·2  PK14-70 Ol@6  Grain 4 rim  13·59  0·72  1·59  0·98  40·3  0·00  0·00  0·02  10·1  0·16  48·5  0·12  0·00  0·00  0·29  99·5  89·6  62·9  PK14-70 Ol@7  Grain 4 core  16·65  0·69  1·62  0·94  40·7  0·01  0·00  0·00  10·2  0·18  48·3  0·11  0·01  0·01  0·22  99·7  89·5  57·4  PK14-38 Ol@1  Grain 1  6·73  0·88  1·58  0·64  41·0  0·02  0·00  0·01  8·70  0·15  49·7  0·02  0·02  0·00  0·35  100  91·1  59·2  PK14-38 Ol@2  Grain 2  6·71  0·84  1·55  0·70  40·9  0·03  0·00  0·01  8·92  0·13  49·7  0·04  0·02  0·01  0·37  100  90·9  65·6  PK14-38 Ol@3  Grain 3  3·19  0·87  1·59  0·66  40·7  0·00  0·00  0·00  8·70  0·17  49·4  0·05  0·00  0·00  0·42  99·4  91·1  50·5  PK14-38 Ol@4  Grain 4  5·28  0·94  1·72  0·77  40·8  0·00  0·00  0·00  8·73  0·14  49·2  0·03  0·00  0·00  0·34  99·2  91·0  63·3  PK14-38 Ol@5  Grain 5  7·12  0·84  1·43  0·60  40·9  0·00  0·00  0·00  8·83  0·13  49·3  0·03  0·02  0·01  0·40  99·7  91·0  69·6  PK14-38 Ol@6  Grain 6 rim  3·94  0·96  1·74  0·88  40·8  0·02  0·00  0·00  8·73  0·14  48·6  0·05  0·00  0·01  0·36  98·8  90·9  62·3  PK14-38 Ol@7  Grain 6 core  3·66  0·83  1·75  0·89  40·4  0·02  0·00  0·00  8·64  0·12  49·5  0·04  0·02  0·01  0·37  99·1  91·2  71·6  PK14-20 Ol@1  Grain 1  −0·22  0·68  2·06  1·07  41·1  0·00  0·00  0·00  7·75  0·14  50·3  0·05  0·00  0·00  0·36  99·8  92·1  53·8  PK14-20 Ol@2  Grain 2  0·85  0·87  1·91  0·77  41·2  0·03  0·00  0·00  7·61  0·11  50·2  0·04  0·03  0·00  0·39  99·7  92·2  69·4  PK14-20 Ol@3  Grain 3  −0·57  0·75  1·97  0·90  40·9  0·01  0·00  0·02  7·67  0·09  50·4  0·03  0·00  0·00  0·36  99·4  92·2  89·0  PK14-20 Ol@4  Grain 4  10·86  0·80  1·42  0·66  41·1  0·01  0·00  0·02  7·46  0·12  50·2  0·04  0·00  0·00  0·38  99·4  92·4  63·4  PK14-20 Ol@5  Grain 5  7·36  0·86  1·19  0·53  41·1  0·00  0·00  0·00  7·66  0·12  50·3  0·07  0·00  0·01  0·33  99·6  92·2  61·9  PK14-20 Ol@6  Grain 6  −0·29  0·86  2·10  1·03  40·9  0·00  0·00  0·00  7·79  0·08  50·1  0·03  0·02  0·01  0·36  99·3  92·1  96·0  PK14-20 Ol@7  Grain 7  3·72  0·76  1·73  0·85  40·5  0·03  0·00  0·02  7·74  0·11  50·3  0·03  0·04  0·00  0·34  99·1  92·1  72·0  PK14-54 Ol@1  Grain 1  5·80  0·86  1·25  0·51  41·3  0·00  0·00  0·03  6·31  0·09  50·4  0·08  0·03  0·02  0·44  98·7  93·5  71·5  PK14-54 Ol@2  Grain 2  6·92  0·91  1·04  0·46  40·7  0·02  0·01  0·00  6·35  0·10  50·9  0·05  0·03  0·00  0·44  98·6  93·5  65·2  PK14-54 Ol@3  Grain 3  8·08  1·12  1·03  0·36  41·2  0·00  0·00  0·00  6·56  0·09  51·1  0·10  0·00  0·01  0·40  99·4  93·3  71·8  PK14-54 Ol@4  Grain 4  6·00  1·12  1·19  0·47  41·1  0·00  0·00  0·00  6·24  0·09  50·6  0·08  0·00  0·01  0·40  98·6  93·6  66·9  PK14-54 Ol@5  Grain 5  9·85  1·05  1·21  0·54  41·2  0·02  0·00  0·00  6·26  0·11  50·8  0·03  0·01  0·01  0·43  98·9  93·6  54·1  PK14-54 Ol@6  Grain 6  4·10  0·80  1·72  0·66  41·0  0·00  0·00  0·05  6·34  0·11  50·9  0·06  0·00  0·01  0·36  98·9  93·5  56·8  PK14-54 Ol@7  Grain 7  11·45  1·08  0·95  0·43  41·0  0·00  0·00  0·00  6·11  0·10  51·4  0·04  0·00  0·00  0·43  99·1  93·8  58·5  PK14-72 Ol@1  Grain 1 rim  12·19  0·93  1·24  0·67  40·3  0·01  0·00  0·02  10·2  0·16  48·2  0·10  0·01  0·00  0·22  99·1  89·5  64·2  PK14-72 Ol@02  Grain 1 mantle  11·47  0·95  1·28  0·55  40·4  0·01  0·01  0·00  10·3  0·15  48·4  0·11  0·02  0·00  0·25  99·6  89·5  65·7  PK14-72 Ol@03  Grain 1 core  12·74  0·89  1·24  0·53  40·2  0·01  0·00  0·00  10·3  0·18  48·3  0·12  0·01  0·01  0·31  99·6  89·4  56·1  PK14-72 Ol@04  Grain 1 mantle  10·16  0·82  1·38  0·57  40·2  0·04  0·00  0·00  10·3  0·17  48·3  0·12  0·01  0·02  0·27  99·5  89·4  59·5  PK14-72 Ol@05  Grain 2 rim  10·39  0·88  1·28  0·63  40·7  0·00  0·00  0·00  10·4  0·16  48·3  0·11  0·03  0·00  0·25  99·9  89·4  65·5  PK14-72 Ol@06  Grain 2 mantle  11·20  0·89  1·24  0·62  40·4  0·01  0·00  0·00  10·3  0·17  48·2  0·11  0·03  0·02  0·22  99·4  89·4  58·8  PK14-72 Ol@07  Grain 2 mantle  11·04  0·78  1·25  0·57  40·5  0·00  0·00  0·00  10·3  0·19  48·0  0·14  0·02  0·02  0·24  99·5  89·4  52·8  PK14-72 Ol@08  Grain 2 core  13·41  0·92  1·27  0·46  40·4  0·00  0·00  0·00  10·3  0·17  47·9  0·14  0·01  0·02  0·27  99·2  89·3  60·5  PK14-72 Ol@09  Grain 3  7·23  0·83  1·38  0·59  40·7  0·00  0·00  0·00  10·4  0·18  47·9  0·10  0·01  0·00  0·24  99·5  89·2  57·3  PK14-72 Ol@10  Grain 4  12·08  0·90  1·42  0·56  39·7  0·00  0·00  0·00  10·2  0·15  48·4  0·11  0·01  0·00  0·26  98·9  89·5  65·2  PK14-72 Ol@11  Grain 5  10·97  1·09  1·13  0·52  40·0  0·02  0·00  0·00  10·2  0·17  48·3  0·11  0·03  0·02  0·24  99·1  89·5  58·2  PK14-15 Ol@1  Grain 1  12·60  0·93  1·39  0·60  40·2  0·00  0·00  0·00  10·9  0·18  47·7  0·02  0·01  0·01  0·16  99·1  88·8  58·2  PK14-15 Ol@2  Grain 2  12·48  1·06  1·34  0·60  40·6  0·02  0·00  0·02  10·9  0·19  48·4  0·02  0·01  0·00  0·17  99·1  88·9  57·0  PK14-15 Ol@3  Grain 3  10·96  1·04  1·51  0·72  40·5  0·01  0·00  0·02  11·0  0·16  48·1  0·01  0·00  0·01  0·20  100  88·7  68·7  PK14-15 Ol@4  Grain 4 rim  10·87  0·98  1·72  0·70  40·3  0·00  0·00  0·02  10·8  0·16  47·1  0·05  0·00  0·01  0·18  98·6  88·7  66·3  PK14-15 Ol@5  Grain 4 mantle  11·59  0·99  1·45  0·67  40·2  0·00  0·00  0·00  10·9  0·18  47·3  0·04  0·01  0·02  0·16  98·8  88·7  61·0  PK14-15 Ol@6  Grain 4 core  14·56  0·84  1·48  0·64  40·2  0·04  0·00  0·00  10·9  0·20  47·3  0·05  0·01  0·02  0·19  98·8  88·7  54·6  PK14-15 Ol@7  Grain 4 mantle  9·57  0·94  1·45  0·65  40·4  0·00  0·00  0·00  10·9  0·17  47·5  0·03  0·00  0·00  0·16  99·2  88·7  64·6  PK14-15 Ol@8  Grain 4 rim  11·53  1·00  1·43  0·58  40·4  0·01  0·00  0·00  10·8  0·17  47·7  0·03  0·04  0·00  0·15  99·3  88·8  63·3  PK14-15 Ol@9  Grain 5  13·20  0·79  1·49  0·64  40·3  0·00  0·00  0·00  10·8  0·20  47·9  0·02  0·02  0·01  0·16  99·4  88·9  54·1  PK14-15 Ol@10  Grain 6  9·01  0·91  1·73  0·70  40·2  0·01  0·00  0·01  10·6  0·18  48·0  0·02  0·00  0·00  0·18  99·3  89·1  59·1  PK14-15 Ol@11  Grain 7  13·07  0·87  1·55  0·57  40·1  0·03  0·00  0·00  10·6  0·15  47·5  0·04  0·01  0·00  0·20  98·7  89·0  69·7  PK14-15 Ol@12  Grain 8  15·11  0·85  1·38  0·46  40·2  0·03  0·00  0·03  11·0  0·18  47·6  0·02  0·00  0·01  0·17  99·3  88·6  61·3  PK14-46 Ol@1  Grain 1  −0·48  0·73  1·62  0·61  41·1  0·00  0·00  0·00  7·40  0·11  50·4  0·00  0·02  0·02  0·41  99·5  92·5  65·1  PK14-46 Ol@2  Grain 2  3·01  0·82  1·53  0·58  40·4  0·00  0·01  0·01  7·39  0·10  50·4  0·02  0·00  0·00  0·47  98·8  92·5  73·6  PK14-46 Ol@3  Grain 3  −0·32  0·71  1·57  0·58  40·7  0·00  0·00  0·01  7·39  0·08  50·5  0·03  0·00  0·00  0·41  99·1  92·5  90·0  PK14-46 Ol@4  Grain 4  −0·57  0·75  1·77  0·63  41·0  0·00  0·00  0·00  7·22  0·09  50·1  0·03  0·00  0·00  0·45  99·0  92·6  78·2  PK14-46 Ol@5  Grain 5  −1·31  0·91  1·50  0·50  40·6  0·00  0·00  0·02  7·38  0·11  50·3  0·06  0·02  0·00  0·43  99·0  92·5  66·2  PK14-46 Ol@6  Grain 6 rim  −0·07  0·79  1·62  0·59  41·2  0·00  0·00  0·01  6·98  0·08  50·1  0·02  0·01  0·00  0·42  98·9  92·8  82·0  PK14-46 Ol@7  Grain 6 mantle  −1·62  0·70  1·75  0·68  41·2  0·00  0·00  0·01  6·95  0·12  50·3  0·03  0·01  0·01  0·45  99·2  92·9  57·1  PK14-46 Ol@8  Grain 6 core  −4·19  0·74  1·73  0·72  41·2  0·01  0·00  0·00  7·23  0·11  50·3  0·03  0·00  0·01  0·39  99·3  92·6  66·6  PK14-46 Ol@9  Grain 6 mantle  −2·55  0·74  1·75  0·71  41·0  0·00  0·00  0·00  7·11  0·11  50·3  0·03  0·00  0·01  0·44  99·0  92·7  62·0  PK14-46 Ol@10  Grain 7  −0·93  0·80  1·48  0·57  40·7  0·03  0·00  0·00  7·23  0·09  50·6  0·04  0·00  0·00  0·42  99·1  92·6  83·9  PK14-52 Ol@1  Grain 1  0·32  0·78  1·67  0·71  41·4  0·00  0·00  0·00  5·48  0·06  51·6  0·07  0·00  0·01  0·49  99·1  94·4  94·7  PK14-52 Ol@2  Grain 2  −1·52  1·02  1·32  0·52  41·5  0·00  0·00  0·00  4·96  0·08  51·6  0·05  0·01  0·00  0·45  98·7  94·9  65·2  PK14-52 Ol@3  Grain 3  −1·58  0·92  1·14  0·44  41·6  0·00  0·00  0·00  5·13  0·09  51·6  0·08  0·01  0·02  0·49  99·0  94·8  55·6  PK14-52 Ol@4  Grain 4  −0·19  0·94  1·28  0·51  41·0  0·00  0·00  0·00  5·15  0·09  51·8  0·08  0·00  0·01  0·51  98·6  94·8  59·1  PK14-52 Ol@5  Grain 5  4·60  0·89  1·07  0·43  41·2  0·01  0·00  0·00  5·43  0·08  51·6  0·09  0·00  0·01  0·46  98·8  94·5  70·4  PK14-52 Ol@6  Grain 6  −3·25  1·01  1·20  0·52  41·2  0·00  0·00  0·00  5·04  0·08  52·0  0·06  0·00  0·02  0·44  98·9  94·9  64·5  PK14-52 Ol@7  Grain 7  −5·43  0·88  1·44  0·69  41·4  0·00  0·00  0·02  5·05  0·06  51·9  0·08  0·01  0·01  0·47  99·0  94·9  80·3  PK14-52 Ol@8  Grain 8  0·56  1·03  1·05  0·42  40·9  0·02  0·00  0·02  5·12  0·07  51·9  0·09  0·03  0·01  0·46  98·6  94·8  74·2  PK14-52 Ol@9  Grain 9  −0·31  0·97  1·27  0·61  41·0  0·01  0·00  0·01  5·03  0·09  52·0  0·08  0·00  0·01  0·50  98·7  94·9  57·0  PK14-52 Ol@10  Grain 10  0·57  0·99  1·22  0·53  41·1  0·00  0·00  0·00  5·40  0·12  51·4  0·04  0·00  0·01  0·45  98·5  94·5  46·3  PK14-75 Ol@1  Grain 1  5·46  0·71  1·42  1·16  41·3  0·00  0·00  0·00  5·08  0·10  52·6  0·08  0·00  0·00  0·50  99·6  94·9  52·7  PK14-75 Ol@2  Grain 2  0·94  0·79  1·21  0·77  41·6  0·00  0·00  0·00  5·13  0·09  52·0  0·08  0·00  0·00  0·50  99·4  94·8  54·3  PK14-75 Ol@3  Grain 3 rim  2·65  0·93  1·11  0·76  41·3  0·04  0·00  0·03  5·18  0·08  52·5  0·08  0·02  0·01  0·44  99·6  94·8  65·5  PK14-75 Ol@4  Grain 3 core  5·11  0·85  1·11  0·70  41·4  0·00  0·00  0·02  5·07  0·05  52·1  0·08  0·00  0·00  0·50  99·2  94·9  96·2  PK14-75 Ol@5  Grain 4 rim  3·28  0·85  1·15  0·76  41·7  0·00  0·00  0·00  5·17  0·07  52·2  0·10  0·00  0·01  0·45  99·8  94·8  78·4  PK14-75 Ol@6  Grain 4 mantle  1·29  0·78  1·27  0·68  41·6  0·04  0·00  0·00  5·30  0·08  52·3  0·08  0·00  0·02  0·48  100  94·7  63·0  PK14-75 Ol@7  Grain 4 core  3·09  0·68  1·27  0·69  41·4  0·00  0·00  0·00  5·18  0·08  52·1  0·12  0·03  0·02  0·48  99·4  94·8  65·5  PK14-09 Ol@1  Grain 1 rim  8·98  0·62  1·41  0·90  41·2  0·00  0·00  0·00  6·28  0·11  50·8  0·11  0·01  0·00  0·43  99·0  93·6  59·0  PK14-09 Ol@2  Grain 1 mantle  8·99  0·90  1·38  0·80  40·6  0·00  0·00  0·00  6·24  0·09  51·1  0·09  0·00  0·01  0·45  98·7  93·6  70·8  PK14-09 Ol@3  Grain 1 core  6·84  0·77  1·50  0·93  40·8  0·01  0·00  0·02  6·31  0·11  50·9  0·13  0·00  0·00  0·42  98·8  93·6  54·6  PK14-09 Ol@4  Grain 2  12·13  0·82  1·26  0·79  41·0  0·00  0·00  0·00  6·22  0·11  51·2  0·11  0·00  0·00  0·43  99·1  93·7  55·3  PK14-09 Ol@5  Grain 3  9·48  0·70  1·14  0·59  40·3  0·00  0·00  0·02  6·13  0·09  51·4  0·12  0·17  0·05  0·45  98·8  93·8  65·7  PK14-09 Ol@6  Grain 4  −0·61  0·68  1·43  0·72  41·1  0·00  0·00  0·00  6·20  0·11  51·3  0·07  0·00  0·01  0·46  99·2  93·7  56·1  PK14-09 Ol@7  Grain 5  1·17  0·81  1·26  0·65  41·5  0·01  0·00  0·01  6·27  0·11  51·1  0·10  0·01  0·00  0·40  99·6  93·6  58·3  PK14-09 Ol@8  Grain 6  5·14  0·98  1·29  0·78  41·2  0·02  0·00  0·00  6·25  0·12  50·9  0·07  0·02  0·00  0·44  99·1  93·6  51·8  PK14-09 Ol@9  Grain 7 rim  14·95  1·00  1·15  0·60  40·9  0·01  0·00  0·00  6·06  0·11  51·1  0·09  0·00  0·00  0·40  98·7  93·8  56·9  PK14-09 Ol@10  Grain 7 core  13·71  0·78  1·25  0·62  40·9  0·01  0·00  0·01  6·10  0·10  51·1  0·14  0·18  0·06  0·48  99·1  93·8  62·0  PK14-41 Serp@1    −23·14  1·76  0·17  0·25  40·5  0·00  0·04  0·06  3·00  0·04  38·8  0·07  0·01  0·00  0·48  83·0  95·9  82·1  PK14-41 Serp@2    −21·80  1·23  0·24  0·12  40·6  0·00  0·03  0·03  3·28  0·04  37·7  0·04  0·02  0·02  0·37  82·2  95·4  79·0  PK14-41 Serp@3    −8·73  1·50  0·18  0·06  42·3  0·00  0·04  0·03  2·92  0·04  38·8  0·07  0·02  0·02  0·15  84·4  96·0  79·9  PK14-41 Serp@4    −12·08  2·19  0·09  0·03  41·0  0·00  0·08  0·01  2·86  0·03  37·6  0·05  0·00  0·02  0·41  82·0  95·9  90·9  PK14-41 Serp@5    −9·72  2·12  0·11  0·08  41·4  0·01  0·06  0·02  2·77  0·06  37·7  0·09  0·02  0·02  0·29  82·4  96·1  47·1  Note: Ol, olivine; Serp, serpentine; PK14-41 Serp@1 to @5, increasing distance away from chromite nodule. Table 2: Li concentration, δ7Li and major oxide compositions of olivine in the Pozantı-Karsantı ophiolite, south Turkey Sample@Spot  Comment  δ7Li  1se  Li  1σ  SiO2  TiO2  Al2O3  Cr2O3  FeO  MnO  MgO  CaO  Na2O  K2O  NiO  Total  Fo  Fe/Mn  PK14-35 Ol@1  Grain 1  5·67  0·85  1·62  0·72  40·6  0·00  0·01  0·00  8·63  0·13  49·3  0·01  0·00  0·00  0·41  99·2  91·1  68·1  PK14-35 Ol@2  Grain 2  5·66  0·80  1·77  0·72  40·6  0·00  0·00  0·00  8·49  0·14  49·3  0·02  0·02  0·01  0·36  98·9  91·3  61·1  PK14-35 Ol@3  Grain 3  4·69  0·88  1·77  0·78  40·8  0·01  0·00  0·00  8·62  0·11  48·8  0·03  0·02  0·02  0·37  98·8  91·1  78·7  PK14-35 Ol@4  Grain 4  1·55  0·99  1·32  0·54  40·7  0·02  0·00  0·03  8·51  0·14  49·4  0·02  0·00  0·00  0·37  99·3  91·3  59·5  PK14-35 Ol@5  Grain 5  2·98  0·80  1·75  0·71  40·4  0·00  0·00  0·00  8·50  0·13  49·5  0·03  0·00  0·02  0·34  98·9  91·3  66·5  PK14-35 Ol@6  Grain 6  4·12  0·73  1·81  0·77  40·8  0·00  0·00  0·01  8·64  0·13  49·4  0·03  0·00  0·00  0·39  99·4  91·1  66·6  PK14-35 Ol@7  Grain 7  0·33  0·81  1·93  0·77  40·5  0·04  0·01  0·01  8·62  0·14  49·4  0·02  0·00  0·00  0·41  99·2  91·2  62·5  PK14-40 Ol@1  Grain 1  4·18  0·97  1·72  0·68  40·9  0·00  0·00  0·00  8·34  0·12  49·4  0·01  0·00  0·01  0·39  99·2  91·4  66·9  PK14-40 Ol@2  Grain 2  9·39  0·92  1·36  0·66  40·8  0·00  0·00  0·01  8·37  0·10  49·6  0·01  0·04  0·01  0·39  99·4  91·4  86·9  PK14-40 Ol@3  Grain 3  6·30  0·83  1·50  0·61  40·5  0·00  0·00  0·00  8·37  0·11  49·6  0·03  0·01  0·00  0·39  99·0  91·4  77·8  PK14-40 Ol@4  Grain 4  5·05  0·93  1·43  0·63  40·3  0·00  0·00  0·00  8·49  0·15  49·8  0·03  0·00  0·00  0·43  99·1  91·3  57·8  PK14-40 Ol@5  Grain 5  2·50  0·83  1·63  0·70  40·6  0·00  0·00  0·00  8·24  0·10  49·7  0·04  0·00  0·00  0·37  99·1  91·6  81·2  PK14-40 Ol@6  Grain 6  2·30  0·85  1·51  0·60  40·2  0·01  0·00  0·00  8·26  0·11  49·7  0·03  0·03  0·00  0·39  98·8  91·6  74·1  PK14-40 Ol@7  Grain 7  7·11  0·78  1·41  0·56  40·4  0·00  0·00  0·03  8·39  0·11  49·5  0·03  0·00  0·01  0·35  98·9  91·4  73·2  PK14-05 Ol@1  Grain 1  2·58  0·80  1·73  1·02  40·9  0·00  0·00  0·00  8·34  0·11  49·8  0·02  0·00  0·02  0·41  99·6  91·5  72·1  PK14-05 Ol@2  Grain 2  6·87  0·75  1·72  1·09  40·7  0·00  0·00  0·00  8·49  0·14  49·9  0·02  0·01  0·01  0·37  99·7  91·4  62·0  PK14-05 Ol@3  Grain 3  10·88  0·67  1·71  1·31  41·1  0·00  0·00  0·00  8·30  0·13  49·0  0·02  0·00  0·00  0·37  100  91·4  62·5  PK14-05 Ol@4  Grain 4  9·66  0·66  1·57  1·25  41·0  0·00  0·05  0·01  8·55  0·13  49·8  0·03  0·00  0·00  0·40  100  91·3  67·5  PK14-05 Ol@5  Grain 5  3·64  0·54  1·89  1·27  41·2  0·00  0·00  0·00  8·50  0·14  49·5  0·02  0·00  0·00  0·44  99·9  91·3  58·2  PK14-16 Ol@1  Grain 1 rim  13·00  0·72  1·46  0·82  40·4  0·00  0·00  0·01  10·9  0·16  47·9  0·04  0·00  0·02  0·17  99·6  88·8  66·0  PK14-16 Ol@2  Grain 1 core  14·65  0·72  1·50  0·85  40·8  0·00  0·00  0·00  11·0  0·17  47·8  0·05  0·01  0·01  0·18  100  88·6  66·0  PK14-16 Ol@3  Grain 2  11·54  0·59  1·66  0·94  40·3  0·01  0·00  0·00  10·8  0·18  48·3  0·03  0·00  0·00  0·16  99·7  88·9  58·6  PK14-16 Ol@4  Grain 3 rim  8·84  0·72  1·70  0·94  39·8  0·02  0·00  0·00  10·8  0·18  47·7  0·02  0·00  0·01  0·20  98·8  88·8  60·4  PK14-16 Ol@5  Grain 3 mantle  9·58  0·80  1·57  0·90  39·6  0·00  0·00  0·01  11·0  0·19  47·9  0·04  0·24  0·05  0·15  99·2  88·7  56·3  PK14-16 Ol@6  Grain 3 core  11·67  0·75  1·53  0·88  39·9  0·01  0·00  0·00  10·8  0·16  47·9  0·01  0·01  0·00  0·11  99·0  88·8  66·9  PK14-16 Ol@7  Grain 3 core  10·80  0·71  1·50  0·84  40·0  0·00  0·00  0·00  10·8  0·16  48·1  0·00  0·00  0·01  0·20  99·4  88·9  68·0  PK14-16 Ol@8  Grain 3 mantle  9·33  0·77  1·48  0·80  39·8  0·02  0·00  0·00  10·8  0·19  48·1  0·02  0·00  0·00  0·15  99·2  88·9  56·8  PK14-70 Ol@1  Grain 1  14·12  0·60  1·56  1·18  40·7  0·02  0·00  0·01  10·6  0·18  48·0  0·13  0·01  0·00  0·29  99·9  89·1  59·5  PK14-70 Ol@2  Grain 2  8·53  0·76  1·58  1·04  40·9  0·00  0·00  0·01  10·4  0·16  48·6  0·13  0·01  0·00  0·23  100  89·4  64·5  PK14-70 Ol@3  Grain 3 rim  11·54  0·70  1·59  1·09  40·6  0·00  0·01  0·03  10·3  0·18  48·9  0·12  0·00  0·00  0·24  100  89·5  56·7  PK14-70 Ol@4  Grain 3 mantle  10·85  0·68  1·61  1·02  40·5  0·01  0·00  0·01  10·4  0·15  48·9  0·10  0·01  0·01  0·26  100  89·4  68·4  PK14-70 Ol@5  Grain 3 core  10·41  0·52  1·58  0·95  40·2  0·00  0·00  0·03  10·4  0·16  48·3  0·12  0·03  0·00  0·23  99·5  89·3  64·2  PK14-70 Ol@6  Grain 4 rim  13·59  0·72  1·59  0·98  40·3  0·00  0·00  0·02  10·1  0·16  48·5  0·12  0·00  0·00  0·29  99·5  89·6  62·9  PK14-70 Ol@7  Grain 4 core  16·65  0·69  1·62  0·94  40·7  0·01  0·00  0·00  10·2  0·18  48·3  0·11  0·01  0·01  0·22  99·7  89·5  57·4  PK14-38 Ol@1  Grain 1  6·73  0·88  1·58  0·64  41·0  0·02  0·00  0·01  8·70  0·15  49·7  0·02  0·02  0·00  0·35  100  91·1  59·2  PK14-38 Ol@2  Grain 2  6·71  0·84  1·55  0·70  40·9  0·03  0·00  0·01  8·92  0·13  49·7  0·04  0·02  0·01  0·37  100  90·9  65·6  PK14-38 Ol@3  Grain 3  3·19  0·87  1·59  0·66  40·7  0·00  0·00  0·00  8·70  0·17  49·4  0·05  0·00  0·00  0·42  99·4  91·1  50·5  PK14-38 Ol@4  Grain 4  5·28  0·94  1·72  0·77  40·8  0·00  0·00  0·00  8·73  0·14  49·2  0·03  0·00  0·00  0·34  99·2  91·0  63·3  PK14-38 Ol@5  Grain 5  7·12  0·84  1·43  0·60  40·9  0·00  0·00  0·00  8·83  0·13  49·3  0·03  0·02  0·01  0·40  99·7  91·0  69·6  PK14-38 Ol@6  Grain 6 rim  3·94  0·96  1·74  0·88  40·8  0·02  0·00  0·00  8·73  0·14  48·6  0·05  0·00  0·01  0·36  98·8  90·9  62·3  PK14-38 Ol@7  Grain 6 core  3·66  0·83  1·75  0·89  40·4  0·02  0·00  0·00  8·64  0·12  49·5  0·04  0·02  0·01  0·37  99·1  91·2  71·6  PK14-20 Ol@1  Grain 1  −0·22  0·68  2·06  1·07  41·1  0·00  0·00  0·00  7·75  0·14  50·3  0·05  0·00  0·00  0·36  99·8  92·1  53·8  PK14-20 Ol@2  Grain 2  0·85  0·87  1·91  0·77  41·2  0·03  0·00  0·00  7·61  0·11  50·2  0·04  0·03  0·00  0·39  99·7  92·2  69·4  PK14-20 Ol@3  Grain 3  −0·57  0·75  1·97  0·90  40·9  0·01  0·00  0·02  7·67  0·09  50·4  0·03  0·00  0·00  0·36  99·4  92·2  89·0  PK14-20 Ol@4  Grain 4  10·86  0·80  1·42  0·66  41·1  0·01  0·00  0·02  7·46  0·12  50·2  0·04  0·00  0·00  0·38  99·4  92·4  63·4  PK14-20 Ol@5  Grain 5  7·36  0·86  1·19  0·53  41·1  0·00  0·00  0·00  7·66  0·12  50·3  0·07  0·00  0·01  0·33  99·6  92·2  61·9  PK14-20 Ol@6  Grain 6  −0·29  0·86  2·10  1·03  40·9  0·00  0·00  0·00  7·79  0·08  50·1  0·03  0·02  0·01  0·36  99·3  92·1  96·0  PK14-20 Ol@7  Grain 7  3·72  0·76  1·73  0·85  40·5  0·03  0·00  0·02  7·74  0·11  50·3  0·03  0·04  0·00  0·34  99·1  92·1  72·0  PK14-54 Ol@1  Grain 1  5·80  0·86  1·25  0·51  41·3  0·00  0·00  0·03  6·31  0·09  50·4  0·08  0·03  0·02  0·44  98·7  93·5  71·5  PK14-54 Ol@2  Grain 2  6·92  0·91  1·04  0·46  40·7  0·02  0·01  0·00  6·35  0·10  50·9  0·05  0·03  0·00  0·44  98·6  93·5  65·2  PK14-54 Ol@3  Grain 3  8·08  1·12  1·03  0·36  41·2  0·00  0·00  0·00  6·56  0·09  51·1  0·10  0·00  0·01  0·40  99·4  93·3  71·8  PK14-54 Ol@4  Grain 4  6·00  1·12  1·19  0·47  41·1  0·00  0·00  0·00  6·24  0·09  50·6  0·08  0·00  0·01  0·40  98·6  93·6  66·9  PK14-54 Ol@5  Grain 5  9·85  1·05  1·21  0·54  41·2  0·02  0·00  0·00  6·26  0·11  50·8  0·03  0·01  0·01  0·43  98·9  93·6  54·1  PK14-54 Ol@6  Grain 6  4·10  0·80  1·72  0·66  41·0  0·00  0·00  0·05  6·34  0·11  50·9  0·06  0·00  0·01  0·36  98·9  93·5  56·8  PK14-54 Ol@7  Grain 7  11·45  1·08  0·95  0·43  41·0  0·00  0·00  0·00  6·11  0·10  51·4  0·04  0·00  0·00  0·43  99·1  93·8  58·5  PK14-72 Ol@1  Grain 1 rim  12·19  0·93  1·24  0·67  40·3  0·01  0·00  0·02  10·2  0·16  48·2  0·10  0·01  0·00  0·22  99·1  89·5  64·2  PK14-72 Ol@02  Grain 1 mantle  11·47  0·95  1·28  0·55  40·4  0·01  0·01  0·00  10·3  0·15  48·4  0·11  0·02  0·00  0·25  99·6  89·5  65·7  PK14-72 Ol@03  Grain 1 core  12·74  0·89  1·24  0·53  40·2  0·01  0·00  0·00  10·3  0·18  48·3  0·12  0·01  0·01  0·31  99·6  89·4  56·1  PK14-72 Ol@04  Grain 1 mantle  10·16  0·82  1·38  0·57  40·2  0·04  0·00  0·00  10·3  0·17  48·3  0·12  0·01  0·02  0·27  99·5  89·4  59·5  PK14-72 Ol@05  Grain 2 rim  10·39  0·88  1·28  0·63  40·7  0·00  0·00  0·00  10·4  0·16  48·3  0·11  0·03  0·00  0·25  99·9  89·4  65·5  PK14-72 Ol@06  Grain 2 mantle  11·20  0·89  1·24  0·62  40·4  0·01  0·00  0·00  10·3  0·17  48·2  0·11  0·03  0·02  0·22  99·4  89·4  58·8  PK14-72 Ol@07  Grain 2 mantle  11·04  0·78  1·25  0·57  40·5  0·00  0·00  0·00  10·3  0·19  48·0  0·14  0·02  0·02  0·24  99·5  89·4  52·8  PK14-72 Ol@08  Grain 2 core  13·41  0·92  1·27  0·46  40·4  0·00  0·00  0·00  10·3  0·17  47·9  0·14  0·01  0·02  0·27  99·2  89·3  60·5  PK14-72 Ol@09  Grain 3  7·23  0·83  1·38  0·59  40·7  0·00  0·00  0·00  10·4  0·18  47·9  0·10  0·01  0·00  0·24  99·5  89·2  57·3  PK14-72 Ol@10  Grain 4  12·08  0·90  1·42  0·56  39·7  0·00  0·00  0·00  10·2  0·15  48·4  0·11  0·01  0·00  0·26  98·9  89·5  65·2  PK14-72 Ol@11  Grain 5  10·97  1·09  1·13  0·52  40·0  0·02  0·00  0·00  10·2  0·17  48·3  0·11  0·03  0·02  0·24  99·1  89·5  58·2  PK14-15 Ol@1  Grain 1  12·60  0·93  1·39  0·60  40·2  0·00  0·00  0·00  10·9  0·18  47·7  0·02  0·01  0·01  0·16  99·1  88·8  58·2  PK14-15 Ol@2  Grain 2  12·48  1·06  1·34  0·60  40·6  0·02  0·00  0·02  10·9  0·19  48·4  0·02  0·01  0·00  0·17  99·1  88·9  57·0  PK14-15 Ol@3  Grain 3  10·96  1·04  1·51  0·72  40·5  0·01  0·00  0·02  11·0  0·16  48·1  0·01  0·00  0·01  0·20  100  88·7  68·7  PK14-15 Ol@4  Grain 4 rim  10·87  0·98  1·72  0·70  40·3  0·00  0·00  0·02  10·8  0·16  47·1  0·05  0·00  0·01  0·18  98·6  88·7  66·3  PK14-15 Ol@5  Grain 4 mantle  11·59  0·99  1·45  0·67  40·2  0·00  0·00  0·00  10·9  0·18  47·3  0·04  0·01  0·02  0·16  98·8  88·7  61·0  PK14-15 Ol@6  Grain 4 core  14·56  0·84  1·48  0·64  40·2  0·04  0·00  0·00  10·9  0·20  47·3  0·05  0·01  0·02  0·19  98·8  88·7  54·6  PK14-15 Ol@7  Grain 4 mantle  9·57  0·94  1·45  0·65  40·4  0·00  0·00  0·00  10·9  0·17  47·5  0·03  0·00  0·00  0·16  99·2  88·7  64·6  PK14-15 Ol@8  Grain 4 rim  11·53  1·00  1·43  0·58  40·4  0·01  0·00  0·00  10·8  0·17  47·7  0·03  0·04  0·00  0·15  99·3  88·8  63·3  PK14-15 Ol@9  Grain 5  13·20  0·79  1·49  0·64  40·3  0·00  0·00  0·00  10·8  0·20  47·9  0·02  0·02  0·01  0·16  99·4  88·9  54·1  PK14-15 Ol@10  Grain 6  9·01  0·91  1·73  0·70  40·2  0·01  0·00  0·01  10·6  0·18  48·0  0·02  0·00  0·00  0·18  99·3  89·1  59·1  PK14-15 Ol@11  Grain 7  13·07  0·87  1·55  0·57  40·1  0·03  0·00  0·00  10·6  0·15  47·5  0·04  0·01  0·00  0·20  98·7  89·0  69·7  PK14-15 Ol@12  Grain 8  15·11  0·85  1·38  0·46  40·2  0·03  0·00  0·03  11·0  0·18  47·6  0·02  0·00  0·01  0·17  99·3  88·6  61·3  PK14-46 Ol@1  Grain 1  −0·48  0·73  1·62  0·61  41·1  0·00  0·00  0·00  7·40  0·11  50·4  0·00  0·02  0·02  0·41  99·5  92·5  65·1  PK14-46 Ol@2  Grain 2  3·01  0·82  1·53  0·58  40·4  0·00  0·01  0·01  7·39  0·10  50·4  0·02  0·00  0·00  0·47  98·8  92·5  73·6  PK14-46 Ol@3  Grain 3  −0·32  0·71  1·57  0·58  40·7  0·00  0·00  0·01  7·39  0·08  50·5  0·03  0·00  0·00  0·41  99·1  92·5  90·0  PK14-46 Ol@4  Grain 4  −0·57  0·75  1·77  0·63  41·0  0·00  0·00  0·00  7·22  0·09  50·1  0·03  0·00  0·00  0·45  99·0  92·6  78·2  PK14-46 Ol@5  Grain 5  −1·31  0·91  1·50  0·50  40·6  0·00  0·00  0·02  7·38  0·11  50·3  0·06  0·02  0·00  0·43  99·0  92·5  66·2  PK14-46 Ol@6  Grain 6 rim  −0·07  0·79  1·62  0·59  41·2  0·00  0·00  0·01  6·98  0·08  50·1  0·02  0·01  0·00  0·42  98·9  92·8  82·0  PK14-46 Ol@7  Grain 6 mantle  −1·62  0·70  1·75  0·68  41·2  0·00  0·00  0·01  6·95  0·12  50·3  0·03  0·01  0·01  0·45  99·2  92·9  57·1  PK14-46 Ol@8  Grain 6 core  −4·19  0·74  1·73  0·72  41·2  0·01  0·00  0·00  7·23  0·11  50·3  0·03  0·00  0·01  0·39  99·3  92·6  66·6  PK14-46 Ol@9  Grain 6 mantle  −2·55  0·74  1·75  0·71  41·0  0·00  0·00  0·00  7·11  0·11  50·3  0·03  0·00  0·01  0·44  99·0  92·7  62·0  PK14-46 Ol@10  Grain 7  −0·93  0·80  1·48  0·57  40·7  0·03  0·00  0·00  7·23  0·09  50·6  0·04  0·00  0·00  0·42  99·1  92·6  83·9  PK14-52 Ol@1  Grain 1  0·32  0·78  1·67  0·71  41·4  0·00  0·00  0·00  5·48  0·06  51·6  0·07  0·00  0·01  0·49  99·1  94·4  94·7  PK14-52 Ol@2  Grain 2  −1·52  1·02  1·32  0·52  41·5  0·00  0·00  0·00  4·96  0·08  51·6  0·05  0·01  0·00  0·45  98·7  94·9  65·2  PK14-52 Ol@3  Grain 3  −1·58  0·92  1·14  0·44  41·6  0·00  0·00  0·00  5·13  0·09  51·6  0·08  0·01  0·02  0·49  99·0  94·8  55·6  PK14-52 Ol@4  Grain 4  −0·19  0·94  1·28  0·51  41·0  0·00  0·00  0·00  5·15  0·09  51·8  0·08  0·00  0·01  0·51  98·6  94·8  59·1  PK14-52 Ol@5  Grain 5  4·60  0·89  1·07  0·43  41·2  0·01  0·00  0·00  5·43  0·08  51·6  0·09  0·00  0·01  0·46  98·8  94·5  70·4  PK14-52 Ol@6  Grain 6  −3·25  1·01  1·20  0·52  41·2  0·00  0·00  0·00  5·04  0·08  52·0  0·06  0·00  0·02  0·44  98·9  94·9  64·5  PK14-52 Ol@7  Grain 7  −5·43  0·88  1·44  0·69  41·4  0·00  0·00  0·02  5·05  0·06  51·9  0·08  0·01  0·01  0·47  99·0  94·9  80·3  PK14-52 Ol@8  Grain 8  0·56  1·03  1·05  0·42  40·9  0·02  0·00  0·02  5·12  0·07  51·9  0·09  0·03  0·01  0·46  98·6  94·8  74·2  PK14-52 Ol@9  Grain 9  −0·31  0·97  1·27  0·61  41·0  0·01  0·00  0·01  5·03  0·09  52·0  0·08  0·00  0·01  0·50  98·7  94·9  57·0  PK14-52 Ol@10  Grain 10  0·57  0·99  1·22  0·53  41·1  0·00  0·00  0·00  5·40  0·12  51·4  0·04  0·00  0·01  0·45  98·5  94·5  46·3  PK14-75 Ol@1  Grain 1  5·46  0·71  1·42  1·16  41·3  0·00  0·00  0·00  5·08  0·10  52·6  0·08  0·00  0·00  0·50  99·6  94·9  52·7  PK14-75 Ol@2  Grain 2  0·94  0·79  1·21  0·77  41·6  0·00  0·00  0·00  5·13  0·09  52·0  0·08  0·00  0·00  0·50  99·4  94·8  54·3  PK14-75 Ol@3  Grain 3 rim  2·65  0·93  1·11  0·76  41·3  0·04  0·00  0·03  5·18  0·08  52·5  0·08  0·02  0·01  0·44  99·6  94·8  65·5  PK14-75 Ol@4  Grain 3 core  5·11  0·85  1·11  0·70  41·4  0·00  0·00  0·02  5·07  0·05  52·1  0·08  0·00  0·00  0·50  99·2  94·9  96·2  PK14-75 Ol@5  Grain 4 rim  3·28  0·85  1·15  0·76  41·7  0·00  0·00  0·00  5·17  0·07  52·2  0·10  0·00  0·01  0·45  99·8  94·8  78·4  PK14-75 Ol@6  Grain 4 mantle  1·29  0·78  1·27  0·68  41·6  0·04  0·00  0·00  5·30  0·08  52·3  0·08  0·00  0·02  0·48  100  94·7  63·0  PK14-75 Ol@7  Grain 4 core  3·09  0·68  1·27  0·69  41·4  0·00  0·00  0·00  5·18  0·08  52·1  0·12  0·03  0·02  0·48  99·4  94·8  65·5  PK14-09 Ol@1  Grain 1 rim  8·98  0·62  1·41  0·90  41·2  0·00  0·00  0·00  6·28  0·11  50·8  0·11  0·01  0·00  0·43  99·0  93·6  59·0  PK14-09 Ol@2  Grain 1 mantle  8·99  0·90  1·38  0·80  40·6  0·00  0·00  0·00  6·24  0·09  51·1  0·09  0·00  0·01  0·45  98·7  93·6  70·8  PK14-09 Ol@3  Grain 1 core  6·84  0·77  1·50  0·93  40·8  0·01  0·00  0·02  6·31  0·11  50·9  0·13  0·00  0·00  0·42  98·8  93·6  54·6  PK14-09 Ol@4  Grain 2  12·13  0·82  1·26  0·79  41·0  0·00  0·00  0·00  6·22  0·11  51·2  0·11  0·00  0·00  0·43  99·1  93·7  55·3  PK14-09 Ol@5  Grain 3  9·48  0·70  1·14  0·59  40·3  0·00  0·00  0·02  6·13  0·09  51·4  0·12  0·17  0·05  0·45  98·8  93·8  65·7  PK14-09 Ol@6  Grain 4  −0·61  0·68  1·43  0·72  41·1  0·00  0·00  0·00  6·20  0·11  51·3  0·07  0·00  0·01  0·46  99·2  93·7  56·1  PK14-09 Ol@7  Grain 5  1·17  0·81  1·26  0·65  41·5  0·01  0·00  0·01  6·27  0·11  51·1  0·10  0·01  0·00  0·40  99·6  93·6  58·3  PK14-09 Ol@8  Grain 6  5·14  0·98  1·29  0·78  41·2  0·02  0·00  0·00  6·25  0·12  50·9  0·07  0·02  0·00  0·44  99·1  93·6  51·8  PK14-09 Ol@9  Grain 7 rim  14·95  1·00  1·15  0·60  40·9  0·01  0·00  0·00  6·06  0·11  51·1  0·09  0·00  0·00  0·40  98·7  93·8  56·9  PK14-09 Ol@10  Grain 7 core  13·71  0·78  1·25  0·62  40·9  0·01  0·00  0·01  6·10  0·10  51·1  0·14  0·18  0·06  0·48  99·1  93·8  62·0  PK14-41 Serp@1    −23·14  1·76  0·17  0·25  40·5  0·00  0·04  0·06  3·00  0·04  38·8  0·07  0·01  0·00  0·48  83·0  95·9  82·1  PK14-41 Serp@2    −21·80  1·23  0·24  0·12  40·6  0·00  0·03  0·03  3·28  0·04  37·7  0·04  0·02  0·02  0·37  82·2  95·4  79·0  PK14-41 Serp@3    −8·73  1·50  0·18  0·06  42·3  0·00  0·04  0·03  2·92  0·04  38·8  0·07  0·02  0·02  0·15  84·4  96·0  79·9  PK14-41 Serp@4    −12·08  2·19  0·09  0·03  41·0  0·00  0·08  0·01  2·86  0·03  37·6  0·05  0·00  0·02  0·41  82·0  95·9  90·9  PK14-41 Serp@5    −9·72  2·12  0·11  0·08  41·4  0·01  0·06  0·02  2·77  0·06  37·7  0·09  0·02  0·02  0·29  82·4  96·1  47·1  Sample@Spot  Comment  δ7Li  1se  Li  1σ  SiO2  TiO2  Al2O3  Cr2O3  FeO  MnO  MgO  CaO  Na2O  K2O  NiO  Total  Fo  Fe/Mn  PK14-35 Ol@1  Grain 1  5·67  0·85  1·62  0·72  40·6  0·00  0·01  0·00  8·63  0·13  49·3  0·01  0·00  0·00  0·41  99·2  91·1  68·1  PK14-35 Ol@2  Grain 2  5·66  0·80  1·77  0·72  40·6  0·00  0·00  0·00  8·49  0·14  49·3  0·02  0·02  0·01  0·36  98·9  91·3  61·1  PK14-35 Ol@3  Grain 3  4·69  0·88  1·77  0·78  40·8  0·01  0·00  0·00  8·62  0·11  48·8  0·03  0·02  0·02  0·37  98·8  91·1  78·7  PK14-35 Ol@4  Grain 4  1·55  0·99  1·32  0·54  40·7  0·02  0·00  0·03  8·51  0·14  49·4  0·02  0·00  0·00  0·37  99·3  91·3  59·5  PK14-35 Ol@5  Grain 5  2·98  0·80  1·75  0·71  40·4  0·00  0·00  0·00  8·50  0·13  49·5  0·03  0·00  0·02  0·34  98·9  91·3  66·5  PK14-35 Ol@6  Grain 6  4·12  0·73  1·81  0·77  40·8  0·00  0·00  0·01  8·64  0·13  49·4  0·03  0·00  0·00  0·39  99·4  91·1  66·6  PK14-35 Ol@7  Grain 7  0·33  0·81  1·93  0·77  40·5  0·04  0·01  0·01  8·62  0·14  49·4  0·02  0·00  0·00  0·41  99·2  91·2  62·5  PK14-40 Ol@1  Grain 1  4·18  0·97  1·72  0·68  40·9  0·00  0·00  0·00  8·34  0·12  49·4  0·01  0·00  0·01  0·39  99·2  91·4  66·9  PK14-40 Ol@2  Grain 2  9·39  0·92  1·36  0·66  40·8  0·00  0·00  0·01  8·37  0·10  49·6  0·01  0·04  0·01  0·39  99·4  91·4  86·9  PK14-40 Ol@3  Grain 3  6·30  0·83  1·50  0·61  40·5  0·00  0·00  0·00  8·37  0·11  49·6  0·03  0·01  0·00  0·39  99·0  91·4  77·8  PK14-40 Ol@4  Grain 4  5·05  0·93  1·43  0·63  40·3  0·00  0·00  0·00  8·49  0·15  49·8  0·03  0·00  0·00  0·43  99·1  91·3  57·8  PK14-40 Ol@5  Grain 5  2·50  0·83  1·63  0·70  40·6  0·00  0·00  0·00  8·24  0·10  49·7  0·04  0·00  0·00  0·37  99·1  91·6  81·2  PK14-40 Ol@6  Grain 6  2·30  0·85  1·51  0·60  40·2  0·01  0·00  0·00  8·26  0·11  49·7  0·03  0·03  0·00  0·39  98·8  91·6  74·1  PK14-40 Ol@7  Grain 7  7·11  0·78  1·41  0·56  40·4  0·00  0·00  0·03  8·39  0·11  49·5  0·03  0·00  0·01  0·35  98·9  91·4  73·2  PK14-05 Ol@1  Grain 1  2·58  0·80  1·73  1·02  40·9  0·00  0·00  0·00  8·34  0·11  49·8  0·02  0·00  0·02  0·41  99·6  91·5  72·1  PK14-05 Ol@2  Grain 2  6·87  0·75  1·72  1·09  40·7  0·00  0·00  0·00  8·49  0·14  49·9  0·02  0·01  0·01  0·37  99·7  91·4  62·0  PK14-05 Ol@3  Grain 3  10·88  0·67  1·71  1·31  41·1  0·00  0·00  0·00  8·30  0·13  49·0  0·02  0·00  0·00  0·37  100  91·4  62·5  PK14-05 Ol@4  Grain 4  9·66  0·66  1·57  1·25  41·0  0·00  0·05  0·01  8·55  0·13  49·8  0·03  0·00  0·00  0·40  100  91·3  67·5  PK14-05 Ol@5  Grain 5  3·64  0·54  1·89  1·27  41·2  0·00  0·00  0·00  8·50  0·14  49·5  0·02  0·00  0·00  0·44  99·9  91·3  58·2  PK14-16 Ol@1  Grain 1 rim  13·00  0·72  1·46  0·82  40·4  0·00  0·00  0·01  10·9  0·16  47·9  0·04  0·00  0·02  0·17  99·6  88·8  66·0  PK14-16 Ol@2  Grain 1 core  14·65  0·72  1·50  0·85  40·8  0·00  0·00  0·00  11·0  0·17  47·8  0·05  0·01  0·01  0·18  100  88·6  66·0  PK14-16 Ol@3  Grain 2  11·54  0·59  1·66  0·94  40·3  0·01  0·00  0·00  10·8  0·18  48·3  0·03  0·00  0·00  0·16  99·7  88·9  58·6  PK14-16 Ol@4  Grain 3 rim  8·84  0·72  1·70  0·94  39·8  0·02  0·00  0·00  10·8  0·18  47·7  0·02  0·00  0·01  0·20  98·8  88·8  60·4  PK14-16 Ol@5  Grain 3 mantle  9·58  0·80  1·57  0·90  39·6  0·00  0·00  0·01  11·0  0·19  47·9  0·04  0·24  0·05  0·15  99·2  88·7  56·3  PK14-16 Ol@6  Grain 3 core  11·67  0·75  1·53  0·88  39·9  0·01  0·00  0·00  10·8  0·16  47·9  0·01  0·01  0·00  0·11  99·0  88·8  66·9  PK14-16 Ol@7  Grain 3 core  10·80  0·71  1·50  0·84  40·0  0·00  0·00  0·00  10·8  0·16  48·1  0·00  0·00  0·01  0·20  99·4  88·9  68·0  PK14-16 Ol@8  Grain 3 mantle  9·33  0·77  1·48  0·80  39·8  0·02  0·00  0·00  10·8  0·19  48·1  0·02  0·00  0·00  0·15  99·2  88·9  56·8  PK14-70 Ol@1  Grain 1  14·12  0·60  1·56  1·18  40·7  0·02  0·00  0·01  10·6  0·18  48·0  0·13  0·01  0·00  0·29  99·9  89·1  59·5  PK14-70 Ol@2  Grain 2  8·53  0·76  1·58  1·04  40·9  0·00  0·00  0·01  10·4  0·16  48·6  0·13  0·01  0·00  0·23  100  89·4  64·5  PK14-70 Ol@3  Grain 3 rim  11·54  0·70  1·59  1·09  40·6  0·00  0·01  0·03  10·3  0·18  48·9  0·12  0·00  0·00  0·24  100  89·5  56·7  PK14-70 Ol@4  Grain 3 mantle  10·85  0·68  1·61  1·02  40·5  0·01  0·00  0·01  10·4  0·15  48·9  0·10  0·01  0·01  0·26  100  89·4  68·4  PK14-70 Ol@5  Grain 3 core  10·41  0·52  1·58  0·95  40·2  0·00  0·00  0·03  10·4  0·16  48·3  0·12  0·03  0·00  0·23  99·5  89·3  64·2  PK14-70 Ol@6  Grain 4 rim  13·59  0·72  1·59  0·98  40·3  0·00  0·00  0·02  10·1  0·16  48·5  0·12  0·00  0·00  0·29  99·5  89·6  62·9  PK14-70 Ol@7  Grain 4 core  16·65  0·69  1·62  0·94  40·7  0·01  0·00  0·00  10·2  0·18  48·3  0·11  0·01  0·01  0·22  99·7  89·5  57·4  PK14-38 Ol@1  Grain 1  6·73  0·88  1·58  0·64  41·0  0·02  0·00  0·01  8·70  0·15  49·7  0·02  0·02  0·00  0·35  100  91·1  59·2  PK14-38 Ol@2  Grain 2  6·71  0·84  1·55  0·70  40·9  0·03  0·00  0·01  8·92  0·13  49·7  0·04  0·02  0·01  0·37  100  90·9  65·6  PK14-38 Ol@3  Grain 3  3·19  0·87  1·59  0·66  40·7  0·00  0·00  0·00  8·70  0·17  49·4  0·05  0·00  0·00  0·42  99·4  91·1  50·5  PK14-38 Ol@4  Grain 4  5·28  0·94  1·72  0·77  40·8  0·00  0·00  0·00  8·73  0·14  49·2  0·03  0·00  0·00  0·34  99·2  91·0  63·3  PK14-38 Ol@5  Grain 5  7·12  0·84  1·43  0·60  40·9  0·00  0·00  0·00  8·83  0·13  49·3  0·03  0·02  0·01  0·40  99·7  91·0  69·6  PK14-38 Ol@6  Grain 6 rim  3·94  0·96  1·74  0·88  40·8  0·02  0·00  0·00  8·73  0·14  48·6  0·05  0·00  0·01  0·36  98·8  90·9  62·3  PK14-38 Ol@7  Grain 6 core  3·66  0·83  1·75  0·89  40·4  0·02  0·00  0·00  8·64  0·12  49·5  0·04  0·02  0·01  0·37  99·1  91·2  71·6  PK14-20 Ol@1  Grain 1  −0·22  0·68  2·06  1·07  41·1  0·00  0·00  0·00  7·75  0·14  50·3  0·05  0·00  0·00  0·36  99·8  92·1  53·8  PK14-20 Ol@2  Grain 2  0·85  0·87  1·91  0·77  41·2  0·03  0·00  0·00  7·61  0·11  50·2  0·04  0·03  0·00  0·39  99·7  92·2  69·4  PK14-20 Ol@3  Grain 3  −0·57  0·75  1·97  0·90  40·9  0·01  0·00  0·02  7·67  0·09  50·4  0·03  0·00  0·00  0·36  99·4  92·2  89·0  PK14-20 Ol@4  Grain 4  10·86  0·80  1·42  0·66  41·1  0·01  0·00  0·02  7·46  0·12  50·2  0·04  0·00  0·00  0·38  99·4  92·4  63·4  PK14-20 Ol@5  Grain 5  7·36  0·86  1·19  0·53  41·1  0·00  0·00  0·00  7·66  0·12  50·3  0·07  0·00  0·01  0·33  99·6  92·2  61·9  PK14-20 Ol@6  Grain 6  −0·29  0·86  2·10  1·03  40·9  0·00  0·00  0·00  7·79  0·08  50·1  0·03  0·02  0·01  0·36  99·3  92·1  96·0  PK14-20 Ol@7  Grain 7  3·72  0·76  1·73  0·85  40·5  0·03  0·00  0·02  7·74  0·11  50·3  0·03  0·04  0·00  0·34  99·1  92·1  72·0  PK14-54 Ol@1  Grain 1  5·80  0·86  1·25  0·51  41·3  0·00  0·00  0·03  6·31  0·09  50·4  0·08  0·03  0·02  0·44  98·7  93·5  71·5  PK14-54 Ol@2  Grain 2  6·92  0·91  1·04  0·46  40·7  0·02  0·01  0·00  6·35  0·10  50·9  0·05  0·03  0·00  0·44  98·6  93·5  65·2  PK14-54 Ol@3  Grain 3  8·08  1·12  1·03  0·36  41·2  0·00  0·00  0·00  6·56  0·09  51·1  0·10  0·00  0·01  0·40  99·4  93·3  71·8  PK14-54 Ol@4  Grain 4  6·00  1·12  1·19  0·47  41·1  0·00  0·00  0·00  6·24  0·09  50·6  0·08  0·00  0·01  0·40  98·6  93·6  66·9  PK14-54 Ol@5  Grain 5  9·85  1·05  1·21  0·54  41·2  0·02  0·00  0·00  6·26  0·11  50·8  0·03  0·01  0·01  0·43  98·9  93·6  54·1  PK14-54 Ol@6  Grain 6  4·10  0·80  1·72  0·66  41·0  0·00  0·00  0·05  6·34  0·11  50·9  0·06  0·00  0·01  0·36  98·9  93·5  56·8  PK14-54 Ol@7  Grain 7  11·45  1·08  0·95  0·43  41·0  0·00  0·00  0·00  6·11  0·10  51·4  0·04  0·00  0·00  0·43  99·1  93·8  58·5  PK14-72 Ol@1  Grain 1 rim  12·19  0·93  1·24  0·67  40·3  0·01  0·00  0·02  10·2  0·16  48·2  0·10  0·01  0·00  0·22  99·1  89·5  64·2  PK14-72 Ol@02  Grain 1 mantle  11·47  0·95  1·28  0·55  40·4  0·01  0·01  0·00  10·3  0·15  48·4  0·11  0·02  0·00  0·25  99·6  89·5  65·7  PK14-72 Ol@03  Grain 1 core  12·74  0·89  1·24  0·53  40·2  0·01  0·00  0·00  10·3  0·18  48·3  0·12  0·01  0·01  0·31  99·6  89·4  56·1  PK14-72 Ol@04  Grain 1 mantle  10·16  0·82  1·38  0·57  40·2  0·04  0·00  0·00  10·3  0·17  48·3  0·12  0·01  0·02  0·27  99·5  89·4  59·5  PK14-72 Ol@05  Grain 2 rim  10·39  0·88  1·28  0·63  40·7  0·00  0·00  0·00  10·4  0·16  48·3  0·11  0·03  0·00  0·25  99·9  89·4  65·5  PK14-72 Ol@06  Grain 2 mantle  11·20  0·89  1·24  0·62  40·4  0·01  0·00  0·00  10·3  0·17  48·2  0·11  0·03  0·02  0·22  99·4  89·4  58·8  PK14-72 Ol@07  Grain 2 mantle  11·04  0·78  1·25  0·57  40·5  0·00  0·00  0·00  10·3  0·19  48·0  0·14  0·02  0·02  0·24  99·5  89·4  52·8  PK14-72 Ol@08  Grain 2 core  13·41  0·92  1·27  0·46  40·4  0·00  0·00  0·00  10·3  0·17  47·9  0·14  0·01  0·02  0·27  99·2  89·3  60·5  PK14-72 Ol@09  Grain 3  7·23  0·83  1·38  0·59  40·7  0·00  0·00  0·00  10·4  0·18  47·9  0·10  0·01  0·00  0·24  99·5  89·2  57·3  PK14-72 Ol@10  Grain 4  12·08  0·90  1·42  0·56  39·7  0·00  0·00  0·00  10·2  0·15  48·4  0·11  0·01  0·00  0·26  98·9  89·5  65·2  PK14-72 Ol@11  Grain 5  10·97  1·09  1·13  0·52  40·0  0·02  0·00  0·00  10·2  0·17  48·3  0·11  0·03  0·02  0·24  99·1  89·5  58·2  PK14-15 Ol@1  Grain 1  12·60  0·93  1·39  0·60  40·2  0·00  0·00  0·00  10·9  0·18  47·7  0·02  0·01  0·01  0·16  99·1  88·8  58·2  PK14-15 Ol@2  Grain 2  12·48  1·06  1·34  0·60  40·6  0·02  0·00  0·02  10·9  0·19  48·4  0·02  0·01  0·00  0·17  99·1  88·9  57·0  PK14-15 Ol@3  Grain 3  10·96  1·04  1·51  0·72  40·5  0·01  0·00  0·02  11·0  0·16  48·1  0·01  0·00  0·01  0·20  100  88·7  68·7  PK14-15 Ol@4  Grain 4 rim  10·87  0·98  1·72  0·70  40·3  0·00  0·00  0·02  10·8  0·16  47·1  0·05  0·00  0·01  0·18  98·6  88·7  66·3  PK14-15 Ol@5  Grain 4 mantle  11·59  0·99  1·45  0·67  40·2  0·00  0·00  0·00  10·9  0·18  47·3  0·04  0·01  0·02  0·16  98·8  88·7  61·0  PK14-15 Ol@6  Grain 4 core  14·56  0·84  1·48  0·64  40·2  0·04  0·00  0·00  10·9  0·20  47·3  0·05  0·01  0·02  0·19  98·8  88·7  54·6  PK14-15 Ol@7  Grain 4 mantle  9·57  0·94  1·45  0·65  40·4  0·00  0·00  0·00  10·9  0·17  47·5  0·03  0·00  0·00  0·16  99·2  88·7  64·6  PK14-15 Ol@8  Grain 4 rim  11·53  1·00  1·43  0·58  40·4  0·01  0·00  0·00  10·8  0·17  47·7  0·03  0·04  0·00  0·15  99·3  88·8  63·3  PK14-15 Ol@9  Grain 5  13·20  0·79  1·49  0·64  40·3  0·00  0·00  0·00  10·8  0·20  47·9  0·02  0·02  0·01  0·16  99·4  88·9  54·1  PK14-15 Ol@10  Grain 6  9·01  0·91  1·73  0·70  40·2  0·01  0·00  0·01  10·6  0·18  48·0  0·02  0·00  0·00  0·18  99·3  89·1  59·1  PK14-15 Ol@11  Grain 7  13·07  0·87  1·55  0·57  40·1  0·03  0·00  0·00  10·6  0·15  47·5  0·04  0·01  0·00  0·20  98·7  89·0  69·7  PK14-15 Ol@12  Grain 8  15·11  0·85  1·38  0·46  40·2  0·03  0·00  0·03  11·0  0·18  47·6  0·02  0·00  0·01  0·17  99·3  88·6  61·3  PK14-46 Ol@1  Grain 1  −0·48  0·73  1·62  0·61  41·1  0·00  0·00  0·00  7·40  0·11  50·4  0·00  0·02  0·02  0·41  99·5  92·5  65·1  PK14-46 Ol@2  Grain 2  3·01  0·82  1·53  0·58  40·4  0·00  0·01  0·01  7·39  0·10  50·4  0·02  0·00  0·00  0·47  98·8  92·5  73·6  PK14-46 Ol@3  Grain 3  −0·32  0·71  1·57  0·58  40·7  0·00  0·00  0·01  7·39  0·08  50·5  0·03  0·00  0·00  0·41  99·1  92·5  90·0  PK14-46 Ol@4  Grain 4  −0·57  0·75  1·77  0·63  41·0  0·00  0·00  0·00  7·22  0·09  50·1  0·03  0·00  0·00  0·45  99·0  92·6  78·2  PK14-46 Ol@5  Grain 5  −1·31  0·91  1·50  0·50  40·6  0·00  0·00  0·02  7·38  0·11  50·3  0·06  0·02  0·00  0·43  99·0  92·5  66·2  PK14-46 Ol@6  Grain 6 rim  −0·07  0·79  1·62  0·59  41·2  0·00  0·00  0·01  6·98  0·08  50·1  0·02  0·01  0·00  0·42  98·9  92·8  82·0  PK14-46 Ol@7  Grain 6 mantle  −1·62  0·70  1·75  0·68  41·2  0·00  0·00  0·01  6·95  0·12  50·3  0·03  0·01  0·01  0·45  99·2  92·9  57·1  PK14-46 Ol@8  Grain 6 core  −4·19  0·74  1·73  0·72  41·2  0·01  0·00  0·00  7·23  0·11  50·3  0·03  0·00  0·01  0·39  99·3  92·6  66·6  PK14-46 Ol@9  Grain 6 mantle  −2·55  0·74  1·75  0·71  41·0  0·00  0·00  0·00  7·11  0·11  50·3  0·03  0·00  0·01  0·44  99·0  92·7  62·0  PK14-46 Ol@10  Grain 7  −0·93  0·80  1·48  0·57  40·7  0·03  0·00  0·00  7·23  0·09  50·6  0·04  0·00  0·00  0·42  99·1  92·6  83·9  PK14-52 Ol@1  Grain 1  0·32  0·78  1·67  0·71  41·4  0·00  0·00  0·00  5·48  0·06  51·6  0·07  0·00  0·01  0·49  99·1  94·4  94·7  PK14-52 Ol@2  Grain 2  −1·52  1·02  1·32  0·52  41·5  0·00  0·00  0·00  4·96  0·08  51·6  0·05  0·01  0·00  0·45  98·7  94·9  65·2  PK14-52 Ol@3  Grain 3  −1·58  0·92  1·14  0·44  41·6  0·00  0·00  0·00  5·13  0·09  51·6  0·08  0·01  0·02  0·49  99·0  94·8  55·6  PK14-52 Ol@4  Grain 4  −0·19  0·94  1·28  0·51  41·0  0·00  0·00  0·00  5·15  0·09  51·8  0·08  0·00  0·01  0·51  98·6  94·8  59·1  PK14-52 Ol@5  Grain 5  4·60  0·89  1·07  0·43  41·2  0·01  0·00  0·00  5·43  0·08  51·6  0·09  0·00  0·01  0·46  98·8  94·5  70·4  PK14-52 Ol@6  Grain 6  −3·25  1·01  1·20  0·52  41·2  0·00  0·00  0·00  5·04  0·08  52·0  0·06  0·00  0·02  0·44  98·9  94·9  64·5  PK14-52 Ol@7  Grain 7  −5·43  0·88  1·44  0·69  41·4  0·00  0·00  0·02  5·05  0·06  51·9  0·08  0·01  0·01  0·47  99·0  94·9  80·3  PK14-52 Ol@8  Grain 8  0·56  1·03  1·05  0·42  40·9  0·02  0·00  0·02  5·12  0·07  51·9  0·09  0·03  0·01  0·46  98·6  94·8  74·2  PK14-52 Ol@9  Grain 9  −0·31  0·97  1·27  0·61  41·0  0·01  0·00  0·01  5·03  0·09  52·0  0·08  0·00  0·01  0·50  98·7  94·9  57·0  PK14-52 Ol@10  Grain 10  0·57  0·99  1·22  0·53  41·1  0·00  0·00  0·00  5·40  0·12  51·4  0·04  0·00  0·01  0·45  98·5  94·5  46·3  PK14-75 Ol@1  Grain 1  5·46  0·71  1·42  1·16  41·3  0·00  0·00  0·00  5·08  0·10  52·6  0·08  0·00  0·00  0·50  99·6  94·9  52·7  PK14-75 Ol@2  Grain 2  0·94  0·79  1·21  0·77  41·6  0·00  0·00  0·00  5·13  0·09  52·0  0·08  0·00  0·00  0·50  99·4  94·8  54·3  PK14-75 Ol@3  Grain 3 rim  2·65  0·93  1·11  0·76  41·3  0·04  0·00  0·03  5·18  0·08  52·5  0·08  0·02  0·01  0·44  99·6  94·8  65·5  PK14-75 Ol@4  Grain 3 core  5·11  0·85  1·11  0·70  41·4  0·00  0·00  0·02  5·07  0·05  52·1  0·08  0·00  0·00  0·50  99·2  94·9  96·2  PK14-75 Ol@5  Grain 4 rim  3·28  0·85  1·15  0·76  41·7  0·00  0·00  0·00  5·17  0·07  52·2  0·10  0·00  0·01  0·45  99·8  94·8  78·4  PK14-75 Ol@6  Grain 4 mantle  1·29  0·78  1·27  0·68  41·6  0·04  0·00  0·00  5·30  0·08  52·3  0·08  0·00  0·02  0·48  100  94·7  63·0  PK14-75 Ol@7  Grain 4 core  3·09  0·68  1·27  0·69  41·4  0·00  0·00  0·00  5·18  0·08  52·1  0·12  0·03  0·02  0·48  99·4  94·8  65·5  PK14-09 Ol@1  Grain 1 rim  8·98  0·62  1·41  0·90  41·2  0·00  0·00  0·00  6·28  0·11  50·8  0·11  0·01  0·00  0·43  99·0  93·6  59·0  PK14-09 Ol@2  Grain 1 mantle  8·99  0·90  1·38  0·80  40·6  0·00  0·00  0·00  6·24  0·09  51·1  0·09  0·00  0·01  0·45  98·7  93·6  70·8  PK14-09 Ol@3  Grain 1 core  6·84  0·77  1·50  0·93  40·8  0·01  0·00  0·02  6·31  0·11  50·9  0·13  0·00  0·00  0·42  98·8  93·6  54·6  PK14-09 Ol@4  Grain 2  12·13  0·82  1·26  0·79  41·0  0·00  0·00  0·00  6·22  0·11  51·2  0·11  0·00  0·00  0·43  99·1  93·7  55·3  PK14-09 Ol@5  Grain 3  9·48  0·70  1·14  0·59  40·3  0·00  0·00  0·02  6·13  0·09  51·4  0·12  0·17  0·05  0·45  98·8  93·8  65·7  PK14-09 Ol@6  Grain 4  −0·61  0·68  1·43  0·72  41·1  0·00  0·00  0·00  6·20  0·11  51·3  0·07  0·00  0·01  0·46  99·2  93·7  56·1  PK14-09 Ol@7  Grain 5  1·17  0·81  1·26  0·65  41·5  0·01  0·00  0·01  6·27  0·11  51·1  0·10  0·01  0·00  0·40  99·6  93·6  58·3  PK14-09 Ol@8  Grain 6  5·14  0·98  1·29  0·78  41·2  0·02  0·00  0·00  6·25  0·12  50·9  0·07  0·02  0·00  0·44  99·1  93·6  51·8  PK14-09 Ol@9  Grain 7 rim  14·95  1·00  1·15  0·60  40·9  0·01  0·00  0·00  6·06  0·11  51·1  0·09  0·00  0·00  0·40  98·7  93·8  56·9  PK14-09 Ol@10  Grain 7 core  13·71  0·78  1·25  0·62  40·9  0·01  0·00  0·01  6·10  0·10  51·1  0·14  0·18  0·06  0·48  99·1  93·8  62·0  PK14-41 Serp@1    −23·14  1·76  0·17  0·25  40·5  0·00  0·04  0·06  3·00  0·04  38·8  0·07  0·01  0·00  0·48  83·0  95·9  82·1  PK14-41 Serp@2    −21·80  1·23  0·24  0·12  40·6  0·00  0·03  0·03  3·28  0·04  37·7  0·04  0·02  0·02  0·37  82·2  95·4  79·0  PK14-41 Serp@3    −8·73  1·50  0·18  0·06  42·3  0·00  0·04  0·03  2·92  0·04  38·8  0·07  0·02  0·02  0·15  84·4  96·0  79·9  PK14-41 Serp@4    −12·08  2·19  0·09  0·03  41·0  0·00  0·08  0·01  2·86  0·03  37·6  0·05  0·00  0·02  0·41  82·0  95·9  90·9  PK14-41 Serp@5    −9·72  2·12  0·11  0·08  41·4  0·01  0·06  0·02  2·77  0·06  37·7  0·09  0·02  0·02  0·29  82·4  96·1  47·1  Note: Ol, olivine; Serp, serpentine; PK14-41 Serp@1 to @5, increasing distance away from chromite nodule. Fig. 4. View largeDownload slide Diagrams of Fo vs NiO (a), MnO (b), and Fe/Mn (c) for olivine in the Pozantı-Karsantı ophiolitic rocks. Fig. 4. View largeDownload slide Diagrams of Fo vs NiO (a), MnO (b), and Fe/Mn (c) for olivine in the Pozantı-Karsantı ophiolitic rocks. The studied olivine grains have Li concentrations varying from 0·95 to 2·01 ppm, a range comparable with that of mantle olivines (1·0–1·8 ppm; Seitz et al., 2004; Woodland et al., 2004; Su et al., 2014). The analyses yielded δ7Li values ranging from -5·43 to 16·65 ‰. Both the Li concentrations and the δ7Li values of olivine in the chromitite and the enveloping dunite exhibit roughly negative correlations with Fo and NiO, and positive correlations with MnO (Fig. 5). The olivines in the dunite and wehrlite cumulates have restricted Li contents of 1·2–1·7 ppm and plot away from the correlation trends defined by those in the rocks of the mantle sequence (Fig. 5a–c), while their δ7Li values are relatively homogeneous and generally higher than those in the mantle sequence (Fig. 5d–f). The serpentine in nodular chromitite sample PK14-41 has extremely low Li concentrations of 0·09–0·24 ppm and low δ7Li values of -23·14 to -8·73 ‰ (Table 2). Fig. 5. View largeDownload slide Diagrams of Li (a–c) and δ7Li (d–f) vs Fo, NiO and MnO for olivine in the Pozantı-Karsantı ophiolitic rocks. Symbols are same as in Fig. 4. Fig. 5. View largeDownload slide Diagrams of Li (a–c) and δ7Li (d–f) vs Fo, NiO and MnO for olivine in the Pozantı-Karsantı ophiolitic rocks. Symbols are same as in Fig. 4. DISCUSSION Behavior of Li isotopes during serpentinization Lithium is a fluid-mobile element, implying that its concentration and isotopic composition in rocks and minerals may vary during alteration. It has been documented that variations in the Li concentration and Li isotopic composition of altered basaltic and peridotitic rocks depend on the nature of the fluid and temperature (Chan et al., 1992, 2002; Decitre et al., 2002; Lundstrom et al., 2005; Vils et al., 2008, 2009). Seawater–basalt exchange at low temperatures could result in Li enrichment and a δ7Li increase in altered basalts, compared to fresh basalts, due to the uptake of seawater Li into the alteration products (e.g. smectites) (Chan et al., 1992, 2002), whereas hydrothermally altered rocks may become depleted in Li concentration and isotopically light as a result of high-temperature hydrothermal extraction at crustal levels and preferential partitioning of 6Li into greenschist and amphibolite facies minerals and serpentine (Chan et al., 2002; Vils et al., 2008, 2009). During serpentinization of oceanic peridotites, ‘relict’ minerals (olivine and pyroxenes) generally have lower Li concentrations and higher δ7Li values, while the reverse is observed in serpentine and chlorite (Decitre et al., 2002). Decitre et al. (2002), therefore, inferred that the Li content of the initial hydrothermal fluid was dominated by oceanic basalt-derived Li, which easily overwhelmed the very low Li content originally present in seawater. Accordingly, the authors proposed that serpentine incorporated Li and preferentially 6Li from the hydrothermal fluid. A similar negative correlation between Li and δ7Li in olivine was observed in a serpentinized peridotite sample from the Trinity ophiolite, but this was interpreted as the result of preferential leaching of 6Li from the mineral grains during serpentinization (Lundstrom et al., 2005). The Li depletion and low δ7Li values of the serpentine in the studied chromitite (Table 2) cannot be ascribed to low-temperature seawater-rock exchange, whereas the negative correlation (Fig. 6) also rules out high-temperature hydrothermal extraction at near surface levels. Although the low δ7Li signature and its negative correlation with Li concentration in the serpentine is consistent with the observations by Decitre et al. (2002), the confirmed preferential partitioning of 6Li in serpentine relative to fluid, and the Li depletion (0·09–0·24 ppm) (Fig. 6) apparently differ from that of the serpentine (several to tens of ppm) reported in Decitre et al. (2002). These discrepancies imply that the serpentinizing fluids may have distinct compositions, possibly poor in Li and enriched in 6Li. Such fluids might be related to melting of a dehydrated subducted slab (Zack et al., 2003; Nishio et al., 2004; Su et al., 2012, 2016; Tang et al., 2012, 2014), but whether an isotopically light domain in the mantle could be produced via slab subduction and dehydration is still contentious (Benton et al., 2004; Marschall et al., 2007; Penniston-Dorland et al., 2012). Fig. 6. View largeDownload slide Profile analysis of Li isotopes of serpentine in chromitite sample PK14-41 showing Li and δ7Li variations with distance away from nodular chromite. Fig. 6. View largeDownload slide Profile analysis of Li isotopes of serpentine in chromitite sample PK14-41 showing Li and δ7Li variations with distance away from nodular chromite. Alternatively, the serpentinizing fluid could have been derived from the surface of chromite crystals (Matveev & Ballhaus, 2002). It has been experimentally documented that in immiscible basalt-water systems chromite and olivine can be physically fractionated due to the differential wetting properties of fluid and melt against oxide and silicate surfaces; chromite collects the exsolved fluid, whereas olivine remains in the melt (Ballhaus, 1998; Matveev & Ballhaus, 2002). Our field survey revealed that intense serpentinization selectively occurs in the podiform chromitite body relative to the enveloping dunite and harzburgite host. At a microscopic scale, the degree of serpentinization decreases away from chromite bands (Su et al., 2016) or nodules (Fig. 6a). Also, there is a correlation between the Li concentration and δ7Li of the serpentine away from chromite nodules (Fig. 6b). These features support the derivation of fluids from the chromite surface. The spatial variations in the compositions of the serpentine might reflect mixing of Li isotopes between relict olivine and serpentinizing fluids, and further indicate the extreme depletion of Li in the initial fluids, thereby confirming the preferential leaching of 6Li from olivine grains during serpentinization (Lundstrom et al., 2005). This implies that the surface fluids associated with chromite (Ballhaus, 1998; Matveev & Ballhaus, 2002) differ from common hydrothermal fluids that evolve from magmas (Li-poor vs. Li-rich). Fe–Mg exchange and Li diffusion effects on the mantle sequence of the ophiolite Fe–Mg exchange Sub-solidus Fe–Mg inter-diffusion between olivine and chromite has been well documented in studies of layered intrusions and ophiolites, during which there is an exchange between Mg in chromite and Fe in olivine (Jackson, 1969; Melcher et al., 1997; Xiao et al., 2016; Bai et al., 2017). This process would lead to relatively large variations of Fo and Fe/Mn ratio and limited NiO and MnO variations in the olivine as observed in the dunite envelope and chromitite of the Pozantı-Karsantı ophiolite (Fig. 4). Nonetheless, the Li isotope systematics of the olivine would not be affected by Fe–Mg exchange with chromite because of the null Li content in chromite (Su et al., 2016). The olivines in the dunite and wehrlite cumulates exhibit homogeneous Fo and Fe/Mn ratios (Fig. 4), indicating a negligible effect of Fe-Mg exchange between olivine and chromite or clinopyroxene. As a consequence, the homogeneous Li element and isotopic compositions in olivine individual grains (Table 2) should represent their initial compositions after crystallization. Li diffusion Lithium diffusion may occur at intra- and inter-grain scales, and between melts and minerals, generally inducing relatively heterogeneous compositions in individual mineral grains in the former case (Seitz et al., 2004; Rudnick & Ionov, 2007; Richter et al., 2014; Tomascak et al., 2016). Core-rim profile analyses on the olivine grains from all rock types in this study reveal homogeneous Li concentrations within analytical uncertainty and mostly <2‰ δ7Li difference in individual grains (Table 2), ruling out the possibility of intra-grain diffusion. Similarly, inter-grain diffusion would not account for the above-mentioned olivine compositions of the dunite and chromitite, since the associated chromite contains little or no Li. The olivine grains in the Pozantı-Karsantı harzburgites exhibit slightly higher Li concentrations than those in MOR-peridotites (Fig. 7), reflecting Li diffusive ingress after partial melting of the harzburgite. Their compositional variation also follows the Li diffusion trend defined by a harzburgite-dunite sample transect from the Trinity ophiolite (Lundstrom et al., 2005). Generally, the Li concentrations and δ7Li values of olivine in the Pozantı-Karsantı harzburgites are equal to or slightly higher than those in the dunite envelope and chromitites (Fig. 7). This is contrary to the theoretical prediction that a mineral phase can potentially receive Li via diffusion, only if it has relatively low Li, eventually resulting in low δ7Li in the mineral (Jeffcoate et al., 2007; Magna et al., 2008; Dohmen et al., 2010; Richter et al., 2014). Thus, it is most likely that the harzburgite experienced percolation of the parental melts from which the dunite and chromitite had formed because mantle-derived melts generally have higher Li concentrations than residual harzburgites (e.g. Tomascak et al., 2008; Xiao et al., 2017). The overall low and variable Li signatures of the olivine in the dunite envelope and chromitite (Fig. 5a–c) probably resulted from fractional crystallization as olivine is the earliest crystallizing phase and Li is a moderately incompatible element that prefers to stay in the melt during magma differentiation (Brenan et al., 1998; Tomascak et al., 1999; Teng et al., 2006; Su et al., 2017). Therefore, the olivine in the dunite envelope and chromitite, as well as the dunite and wehrlite cumulates, preserves the primary Li and δ7Li signatures from when they were formed. Taking into account that there is no Li isotope fractionation during partial melting and fractional crystallization (e.g. Tomascak et al., 1999; Teng et al., 2006), the Li isotopic compositions of these olivine grains should represent the compositions of their parental magmas and their sources. Fig. 7. View largeDownload slide Variation of Li vs δ7Li for olivine in the Pozantı-Karsantı ophiolitic rocks. Olivine data for the Luobusa (Su et al., 2016) and Trinity (Lundstrom et al., 2005) ophiolites and Gakkel Ridge peridotites (Gao et al., 2011) are plotted for comparison. The δ7Li ranges of MORB, OIB, arc lavas, eclogite + granulite, altered MORB and marine sediment are from Tomascak et al. (2016) and references therein. The trend of Li diffusion or melt percolation is defined on the basis of the Trinity data (Lundstrom et al., 2005). Partial melting and fractional crystallization trends are defined on the basis of the incompatibility of Li and its insignificant isotope fractionation during high temperature processes. Fig. 7. View largeDownload slide Variation of Li vs δ7Li for olivine in the Pozantı-Karsantı ophiolitic rocks. Olivine data for the Luobusa (Su et al., 2016) and Trinity (Lundstrom et al., 2005) ophiolites and Gakkel Ridge peridotites (Gao et al., 2011) are plotted for comparison. The δ7Li ranges of MORB, OIB, arc lavas, eclogite + granulite, altered MORB and marine sediment are from Tomascak et al. (2016) and references therein. The trend of Li diffusion or melt percolation is defined on the basis of the Trinity data (Lundstrom et al., 2005). Partial melting and fractional crystallization trends are defined on the basis of the incompatibility of Li and its insignificant isotope fractionation during high temperature processes. Melt penetration in the Pozantı-Karsantı ophiolite Melt penetration in the mantle harzburgite The harzburgite from the Pozantı-Karsantı ophiolite preserves refractory chemical compositions (e.g. high Mg# and Cr#) in minerals (Fig. 4; Saka et al., 2014; Lian et al., 2017b) and depletions in whole-rock Al2O3, CaO and rare earth element (REE) contents (Saka et al., 2014). It has, therefore, been suggested that the harzburgite is residual after partial melting in a MOR environment (Saka et al., 2014). This inference could be argued based on the major element and Li isotopic compositions of the major minerals. Low Al2O3 and TiO2 in pyroxene and chromite in the harzburgite are more comparable with those in SSZ-type peridotites (Saka et al., 2014; Lian et al., 2017b). The δ7Li values of the olivine in the Pozantı-Karsantı harzburgite only partially overlap the range of those in the Gakkel Ridge peridotites, but the former mostly extend to lower values (Fig. 7). Furthermore, the harzburgite is also characterized by slight to moderate whole-rock enrichments in light REE and large ion lithophile elements, reflecting variable metasomatism (Saka et al., 2014). These results suggest that the Pozantı-Karsantı harzburgite more likely formed in a SSZ setting and suffered a high degree of melt extraction and subsequent melt percolation. The similar Li isotopic composition to the Luobusa harzburgite (Fig. 7) implies that the metasomatic melts might be arc-like lavas with low δ7Li values (Su et al., 2016). Parental melts of the dunite envelope and podiform chromitite It is widely accepted that the podiform chromitite and dunite envelopes of ophiolites are of magmatic origin and normally show variable compositions, depending on the nature of the parental melts and tectonic setting (Arai & Miura, 2016 and references therein). The dunite and chromitite in the mantle sequence of the Pozantı-Karsantı ophiolite exhibit larger variations in the major element compositions of their constituent minerals than other rock units in the same ophiolite (Fig. 4; Saka et al., 2014; Avcı et al., 2017), and these major element variations are not well correlated with Li concentration and δ7Li (Fig. 5). These features indicate that the dunite-chromitite association, despite its similar occurrence (Fig. 2d), did not form from a single parental melt but was different from pod to pod. Nonetheless, the compositional variation of their parental melts might be continuous, as reflected in the good correlation between Li and δ7Li in the dunite envelopes (Fig. 7). The δ7Li values of the dunite envelopes extend beyond MORB and OIB (ocean island basalt) variations and overlap the arc lava range (Fig. 7), suggesting their affinity with arc magmatism. Relative to the dunites, the podiform chromitites show wider δ7Li variations and overall lower values, and roughly negative correlation between Li and δ7Li (Fig. 7). These differences can be ascribed to two possibilities: (1) the decrease in δ7Li from dunite to chromitite is comparable to that in the Luobusa ophiolite, which is in the range of granulites and eclogites (Fig. 7; Su et al., 2016). It was previously interpreted that the parental melts of the podiform chromitite might have originated from the melting of a dehydrated and metamorphosed subducted slab. Such melts, together with the abovementioned arc-like melts, continuously and progressively reacted with the oceanic lithospheric mantle, resulting in the formation of the dunite and chromitite, and accounting for the observed Li isotope heterogeneity; (2) the podiform chromitite and associated dunite were generated from a common arc-like melt and initially had the same isotopic compositions. Subsequently, the olivine in the podiform chromitite was compositionally (Li isotopes at least) modified by surface fluids from the chromite as discussed above. As the amount of surface fluids depends on the size and quantity of chromite grains, the occurrence of more chromite grains in chromitite will favor the release of more fluid, which will result in significant modification of the olivine composition. This can explain the larger δ7Li variations in the banded and massive chromitite samples than in the disseminated ones (Fig. 5). Magmatism events at crustal level and implications for initial subduction Previous studies have revealed that the ultramafic cumulates of the Pozantı-Karsantı ophiolite are compositionally distinct from those in MOR and back-arc basin ophiolites, and represent part of the plutonic core of an intra-oceanic island arc (Parlak et al., 2002; Saka et al., 2014) or that formed in a forearc tectonic setting (Polat et al., 1996). The Li isotopic compositions of the ultramafic cumulates plot away from MORB and fall between OIB and arc lava fields (Fig. 7), further supporting the subduction origin of these ultramafic cumulates and their arc-like parental magmas. Furthermore, the overlapping and restricted δ7Li ranges of the cumulate dunites and wehrlites (Fig. 7) suggest their derivation from a common parental magma. In addition, the absence of plagioclase and enrichment of clinopyroxene in the ultramafic cumulates (Dilek & Furnes, 2009; Parlak et al., 2009; Saka et al., 2014) indicate that the parental magmas are hydrous in nature (Niu, 2005) and are likely related to dehydration of a subducting slab. From ultramafic to mafic cumulates, progressive changes in the geochemical compositions in terms of both major and trace element concentrations (Polat et al., 1996; Saka et al., 2014) indicate their genetic relationships. This was controversially interpreted as compositional changes in their source, from felsic upper crust to mafic-dominant immature oceanic island arc crust (Polat et al., 1996) and also attributed to variable degrees of fractional crystallization of a parental melt (Saka et al., 2014). The consensus is that the parental melts of the ultramafic and mafic cumulates were derived from typical arc magmatism. In contrast, rocks of the earlier metamorphic sole show a progressive compositional variation from N- to E-MORB, through OIB to island arc tholeiites (IAT) (Polat et al., 1996; Çelik, 2007), while the latest mafic dykes intruding the Pozantı-Karsantı ophiolite and metamorphic sole are compositionally similar to island arc lavas and are thought to have been produced during intra-oceanic subduction (Lytwyn & Casey, 1995; Polat et al., 1996; Lian et al., 2017a). In summary, the Pozantı-Karsantı ophiolite records the penetration of various melts during its formation and evolution. These melts display progressive compositional variations mainly between OIB and immature and mature oceanic island arc magmatism, pointing to their correlation with initial subduction. During the initial stage of subduction, diverse materials including marine sediments, altered and fresh oceanic crust were probably incorporated into the melt or were part of the package of rocks that underwent partial melting (Fig. 8). These materials were highly variable in Li isotopic compositions (Tang et al., 2007; Tomascak et al., 2016) which could account for the large Li isotopic variations in the Pozantı-Karsantı ophiolite. In comparison, the Luobusa ophiolite which hosts an economic chromite deposit was believed to have formed in a mature island arc (Zhou et al., 1996, 2014; Su et al., 2016), whereas the chromite-barren Trinity ophiolite formed in a back-arc basin (Lundstrom et al., 2005). The distinct Li isotopic compositions among these three ophiolites (Fig. 7) suggest that the generation and compositions of penetrating melts in the oceanic lithosphere and subsequent formation of the chromite deposits were strongly controlled by tectonic setting. Fig. 8. View largeDownload slide A cartoon of initial subduction showing the diverse materials incorporated into partial melts which penetrate the mantle wedge. Fig. 8. View largeDownload slide A cartoon of initial subduction showing the diverse materials incorporated into partial melts which penetrate the mantle wedge. CONCLUSIONS The olivine of the Pozantı-Karsantı ophiolite has variable Li concentrations (0·95 to 2·01 ppm) and δ7Li values (-5·43 to 16·65 ‰). The refractory harzburgite preserves only partly MOR–peridotite-like Li isotopic compositions and mostly extends to lower δ7Li values and higher Li concentrations, suggesting a high degree of initial melt extraction and subsequent arc-like melt penetration processes. The δ7Li values of the dunite envelope reveal the affinity of their parental magmas to arc magmatism, while the parental melts of the podiform chromitites: (1) might have originated from melting of a dehydrated and metamorphosed subducted slab, or (2) were the same as the associated dunite but later suffered compositional modification by surface fluids associated with chromites. The Li isotopic compositions of the dunite and wehrlite cumulates fall between OIB and arc lava fields, supporting the subduction origin of these ultramafic cumulates and their arc-like parental magmas. These results, together with previous studies of the metamorphic sole rocks, mafic cumulates and dykes, indicate that the Pozantı-Karsantı ophiolite formed in a SSZ environment during initial subduction and experienced percolation by various melts. Comparisons with data from the Luobusa and Trinity ophiolites suggest that tectonic setting controls the generation and composition of penetrating melts in the oceanic lithosphere and the subsequent formation of chromite deposits. ACKNOWLEDGEMENTS We would like to thank Di Zhang, Guo-Qiang Tang and Yu Liu for their assistance with the electron microprobe and SIMS analyses. Very constructive and detailed comments from Simon Turner, Paul Tomascak, Joyashish Thakurta and an anonymous reviewer are greatly appreciated. FUNDING This study was supported by the National Natural Science Foundation of China (Grants 91755205 and 41772055) and the State Key Laboratory of Lithospheric Evolution (Grant 201701). REFERENCES Aitchison J. C., Davis A. M., Liu J., Luo H., Malpas J. G., McDermid I. R. C., Wu H., Ziabrev S. V., Zhou M. F. ( 2000). Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung–Zangbo suture (southern Tibet). Earth and Planetary Science Letters  183, 231– 244. Google Scholar CrossRef Search ADS   Arai S., Miura M. ( 2016). Formation and modification of chromitites in the mantle. Lithos  264, 277– 295. Google Scholar CrossRef Search ADS   Avcı E., Uysal İ., Akmaz R. M., Saka S. ( 2017). Ophiolitic chromitites from the Kızılyüksek area of the Pozantı-Karsantı ophiolite (Adana, southern Turkey): implication for crystallization from a fractionated boninitic melt. Ore Geology Reviews 90, 166– 183. Bai Y., Su B. X., Chen C., Yang S. H., Liang Z., Xiao Y., Qin K. Z., Malaviarachchi S. P. K. ( 2017). Base metal mineral segregation and Fe-Mg exchange inducing extreme compositions of olivine and chromite from the Xiadong Alaskan-type complex in the southern part of the Central Asian Orogenic Belt. Ore Geology Reviews 90, 184– 192. Ballhaus C. ( 1998). Origin of podiform chromite deposits by magma mingling. Earth and Planetary Science Letters  156, 185– 193. Google Scholar CrossRef Search ADS   Benton L. D., Ryan J. G., Savov I. P. ( 2004). Lithium abundance and isotope systematics of forearc serpentinites, Conical Seamount, Mariana forearc: Insights into the mechanics of slab-mantle exchange during subduction. Geochemistry, Geophysics, Geosystems  5, doi: 10.1029/2004GC000708. Brenan J. M., Neroda E., Lundstrom C. C., Shaw H. F., Ryerson F. J., Phinney D. L. ( 1998). Behaviour of boron, beryllium, and lithium during melting and crystallization: constraints from mineral-melt partitioning experiments. Geochimica et Cosmochimica Acta  62, 2129– 2141. Google Scholar CrossRef Search ADS   Bryant C. J., Chappell B. W., Bennett V. C., McCulloch M. T. ( 2004). Lithium isotopic composition of the New England Batholith: correlations with inferred source rock compositions. Transactions of the Royal Society of Edinburgh-Earth Sciences  95, 199– 214. Google Scholar CrossRef Search ADS   Çelik O. F. ( 2007). Metamorphic sole rocks and their mafic dykes in the eastern Tauride belt ophiolites (southern Turkey): implications for OIB-type magma generation following slab break-off. Geological Magazine  144, 849– 866. Google Scholar CrossRef Search ADS   Çelik O. F. ( 2008). Comparison of the K-Ar and 40Ar-39Ar dating methods: examples from the metamorphic sole rocks of the southern Turkish ophiolites. Yerbilimleri  29, 101– 110. Chan L. H., Alt J. C., Teagle D. A. H. ( 2002). Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater–basalt exchange at ODP sites 504B and 896A. Earth and Planetary Science Letters  201, 187– 201. Google Scholar CrossRef Search ADS   Chan L. H., Edmond J. M., Thompson G., Gillis K. ( 1992). Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans. Earth and Planetary Science Letters  108, 151– 160. Google Scholar CrossRef Search ADS   Decitre S. E., Deloule E., Reisberg L., James R., Agrinier P., Mevel C. ( 2002). Behavior of Li and its isotopes during serpentinization of oceanic peridotites. Geochemistry, Geophysics, Geosystems  3, doi:10.1029/2001GC000178. Dilek Y., Furnes H. ( 2009). Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos  113, 1– 20. Google Scholar CrossRef Search ADS   Dilek Y., Furnes H. ( 2011). Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin  123, 387– 411. Google Scholar CrossRef Search ADS   Dilek Y., Thy P., Hacker B., Grundvig S. ( 1999). Structure and petrology of Tauride ophiolites and mafic dike intrusions (Turkey): implications for the Neotethyan ocean. Geological Society of America Bulletin  111, 1192– 1216. Google Scholar CrossRef Search ADS   Dilek Y., Thy P. ( 2009). Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: model for multi-stage early arc–forearc magmatism in Tethyan subduction factories. Lithos  113, 68– 87. Google Scholar CrossRef Search ADS   Dohmen R., Kasemann S. A., Coogan L., Chakraborty S. ( 2010). Diffusion of Li in olivine. Part I: experimental observations and a multi species diffusion model. Geochimica et Cosmochimica Acta  74, 274– 292. Google Scholar CrossRef Search ADS   Elliott T., Thomas A., Jeffcoate A., Niu Y. L. ( 2006). Lithium isotope evidence for subduction-enriched mantle in the source of midocean-ridge basalts. Nature  443, 565– 568. Google Scholar CrossRef Search ADS   Gao Y. J., Snow J. E., Casey J. F., Yu J. B. ( 2011). Cooling-induced fractionation of mantle Li isotopes from the ultraslow-spreading Gakkle Ridge. Earth and Planetary Science Letters  301, 231– 240. Google Scholar CrossRef Search ADS   GDMRE (General Directrorate of Mineral Research and Exploration). ( 2002). 1:500.000 scaled Geological Maps of Turkey (Adana map section), Ankara-Turkey. Jackson E. D. ( 1969). Chemical variation in coexisting chromite and olivine in chromitite zones of the Stillwater Complex. Economic Geology Monograph  4, 41– 71. Jeffcoate A. B., Elliott T., Kasemann S. A., Ionov D., Cooper K., Brooker R. ( 2007). Li isotope fractionation in peridotites and mafic melts. Geochimica et Cosmochimica Acta  71, 202– 218. Google Scholar CrossRef Search ADS   Lian D., Yang J., Dilek Y., Liu F., Wu W., Xiong F. ( 2017a). Geochemical, geochronological, and Sr-Nd isotopic constraints on the origin of the mafic dikes from the Pozanti-Karsanti ophiolite: implications for tectonic evolution. The Journal of Geology  125, 223– 239. Google Scholar CrossRef Search ADS   Lian D., Yang J., Dilek Y., Wu W., Zhang Z., Xiong F., Liu F., Zhou W. ( 2017b). Diamond, moissanite and other unusual minerals in podiform chromitites from the Pozanti-Karsanti ophiolite, southern Turkey: implications for the deep mantle origin and ultra-reducing conditions in podiform chromitite. American Mineralogist, doi:10.2138/am-2017–5850. Lundstrom C. C., Chaussidon M., Hsui A. T., Kelemen P., Zimmerman M. ( 2005). Observations of Li isotopic variations in the Trinity Ophiolite: evidence for isotopic fractionation by diffusion during mantle melting. Geochimica et Cosmochimica Acta  69, 735– 751. Google Scholar CrossRef Search ADS   Lytwyn J. N., Casey J. F. ( 1995). The geochemistry of postkinematic mafic dike swarms and subophiolitic metabasites, Pozanti-Karsanti ophiolite, Turkey: evidence for ridge subduction. Geological Society of America Bulletin  107, 830– 850. Google Scholar CrossRef Search ADS   Magna T., Ionov D. A., Oberli F., Wiechert U. ( 2008). Links between mantle metasomatism and lithium isotopes: evidence from glass-bearing and cryptically metasomatized xenoliths from Mongolia. Earth and Planetary Science Letters  276, 214– 222. Google Scholar CrossRef Search ADS   Marschall H. R., Pogge von Strandmann P. A. E., Seitz H. M., Elliott T., Niu Y. ( 2007). The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth and Planetary Science Letters  262, 563– 580. Google Scholar CrossRef Search ADS   Matveev S., Ballhaus C. ( 2002). Role of water in the origin of podiform chromitite deposits. Earth and Planetary Science Letters  203, 235– 243. Google Scholar CrossRef Search ADS   Melcher F., Grum W., Simon G., Thalhammer T. V., Stumpfl E. F. ( 1997). Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. Journal of Petrology  38, 1419– 1458. Google Scholar CrossRef Search ADS   Nishio Y., Shunichi N., Yamamoto J., Sumino H., Matsumoto T., Prikhodko V. S., Arai S. ( 2004). Lithium isotopic systematics of the mantle-derived ultramafic xenoliths: implications for EM1 origin. Earth and Planetary Science Letters  217, 245– 261. Google Scholar CrossRef Search ADS   Niu Y. L. ( 2005). Generation and evolution of basaltic magmas: some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China. Geological Journal of China Universities  11, 9– 46. Paktunc A. D. ( 1990). Origin of podiform chromite deposits by multistage melting, melt segregation and magma mixing in the upper mantle. Ore Geology Reviews  5, 211– 222. Google Scholar CrossRef Search ADS   Parlak O. ( 2000). Geochemistry and significance of mafic dyke swarms in the Pozantı-Karsantı ophiolite (southern Turkey). Turkish Journal of Earth Sciences  9, 29– 38. Parlak O., Höck V., Delaloye M. ( 2000). Suprasubduction zone origin of the Pozanti-Karsanti ophiolite (southern Turkey) deduced from whole-rock and mineral chemistry of the gabbroic cumulates. Geological Society, London, Special Publications  173, 219– 234. Google Scholar CrossRef Search ADS   Parlak O., Höck V., Delaloye M. ( 2002). The supra-subduction zone Pozanti–Karsanti ophiolite, southern Turkey: evidence for high-pressure crystal fractionation of ultramafic cumulates. Lithos  65, 205– 224. Google Scholar CrossRef Search ADS   Parlak O., Rızaoğlu T., Bağcı U., Karaoğlan F., Höck V. ( 2009). Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey. Tectonophysics  473, 173– 187. Google Scholar CrossRef Search ADS   Pearce J. A., Lippard S. J., Roberts S. ( 1984). Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological Society, London, Special Publications  16, 77– 94. Google Scholar CrossRef Search ADS   Penniston-Dorland S. C., Bebout G. E., von Strandmann P. A. P., Elliott T., Sorensen S. S. ( 2012). Lithium and its isotopes as tracers of subduction zone fluids and metasomatic processes: Evidence from the Catalina Schist, California, USA. Geochimica et Cosmochimica Acta  77, 530– 545. Google Scholar CrossRef Search ADS   Polat A., Casey J. F., Kerrich R. ( 1996). Geochemical characteristics of accreted material beneath the Pozanti-Karsanti ophiolite, Turkey: intra-oceanic detachment, assembly and obduction. Tectonophysics  263, 249– 276. Google Scholar CrossRef Search ADS   Richter F., Watson B., Chaussidon M., Mendybaev R., Ruscitto D. ( 2014). Lithium isotope fractionation by diffusion in minerals. Part 1: pyroxenes. Geochimica et Cosmochimica Acta  126, 352– 370. Google Scholar CrossRef Search ADS   Robertson A. H. F. ( 2002). Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos  65, 1– 67. Google Scholar CrossRef Search ADS   Rollinson H. R. ( 2008). The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: inferred parental melt compositions. Contributions to Mineralogy and Petrology  156, 273– 288. Google Scholar CrossRef Search ADS   Rudnick R. L., Ionov D. A. ( 2007). Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from fareast Russia: product of recent melt/fluid-rock reaction. Earth and Planetary Science Letters  256, 278– 293. Google Scholar CrossRef Search ADS   Saka S., Uysal I., Akmaz R. M., Kaliwoda M., Hochleitner R. ( 2014). The effects of partial melting, melt–mantle interaction and fractionation on ophiolite generation: constraints from the late Cretaceous Pozantı-Karsantı ophiolite, southern Turkey. Lithos  202–203, 300– 316. Google Scholar CrossRef Search ADS   Seitz H. M., Brey G. P., Lahaye Y., Durali S., Weyer S. ( 2004). Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes. Chemical Geology  212, 163– 177. Google Scholar CrossRef Search ADS   Su, B. X., Zhou, M. F. & Robinson, P. T. ( 2016). Extremely large fractionation of Li isotopes in chromitite-bearing mantle sequence. Scientific Reports 6, 22370. Su B. X., Chen C., Bai Y., Pang K. N., Qin K. Z., Sakyi P. A. ( 2017). Lithium isotopic composition of Alaskan-type intrusion and its implication. Lithos  286–287, 363– 368. Google Scholar CrossRef Search ADS   Su B. X., Zhang H. F., Deloule E., Sakyi P. A., Xiao Y., Tang Y. J., Hu Y., Ying J. F., Liu P. P. ( 2012). Extremely high Li and low δ7Li signatures in the lithospheric mantle. Chemical Geology  292-293, 149– 157. Google Scholar CrossRef Search ADS   Su B. X., Zhang H. F., Deloule E., Vigier N., Hu Y., Tang Y. J., Xiao Y., Sakyi P. A. ( 2014). Distinguishing silicate and carbonatite mantle metasomatism by using lithium and its isotopes. Chemical Geology  381, 67– 77. Google Scholar CrossRef Search ADS   Su B.-X., Gu X.-Y., Deloule E., Zhang H.-F., Li Q.-L., Li X.-H., Vigier N., Tang Y.-J., Tang G.-Q., Liu Y., Pang K.-N., Brewer A., Mao Q., Ma Y.-G. ( 2015). Potential orthopyroxene, clinopyroxene and olivine reference materials for in situ lithium isotope determination. Geostandards and Geoanalytical Research  39, 357– 369. Google Scholar CrossRef Search ADS   Tang Y. J., Zhang H. F., Ying J. F. ( 2007). Review of the lithium isotope system as a geochemical tracer. International Geology Review  49, 374– 388. Google Scholar CrossRef Search ADS   Tang Y. J., Zhang H. F., Deloule E., Su B. X., Ying J. F., Santosh M., Xiao Y. ( 2014). Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton. Scientific Reports  4, 4274. Google Scholar CrossRef Search ADS   Tang Y. J., Zhang H. F., Deloule E., Su B. X., Ying J. F., Xiao Y., Hu Y. ( 2012). Slab-derived lithium isotopic signatures in mantle xenoliths from northeastern North China Craton. Lithos  149, 79– 90. Google Scholar CrossRef Search ADS   Teng F. Z., McDonough W. F., Rudnick R. L., Walker R. J., Sirbescu M. L. C. ( 2006). Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota. American Mineralogist  91, 1488– 1498. Google Scholar CrossRef Search ADS   Thuizat R., Whitechurch H., Montigny R., Juteau T. ( 1981). K-Ar dating of the some infra-ophiolitic metamorphic soles from the eastern Mediterranean: new evidence for intra-oceanic thrusting before obduction. Earth and Planetary Science Letters  52, 302– 310. Google Scholar CrossRef Search ADS   Tomascak P. B., Magna T., Dohmen R. ( 2016). Advances in Lithium Isotope Geochemistry . Berlin: Springer. Google Scholar CrossRef Search ADS   Tomascak P. B., Langmuir C. H., le Roux P. J., Shirey S. B. ( 2008). Lithium isotopes in global mid-ocean ridge basalts. Geochimica et Cosmochimica Acta  72, 1626– 1637. Google Scholar CrossRef Search ADS   Tomascak P. B., Tera F., Helz R. T., Walker R. J. ( 1999). The absence of lithium isotope fractionation during basalt differentiation: new measurements by multi-collector sector ICP-MS. Geochimica et Cosmochimica Acta  63, 907– 910. Google Scholar CrossRef Search ADS   Vils F., Tonarini S., Kalt A., Seitz H. M. ( 2009). Boron, lithium and strontium isotopes as tracers of seawater–serpentinite interaction at Mid-Atlantic ridge, ODP Leg 209. Earth and Planetary Science Letters  286, 414– 425. Google Scholar CrossRef Search ADS   Vils F., Pelletier L., Kalt A., Müntener O., Ludwig T. ( 2008). The lithium, boron and beryllium content of serpentinized peridotites from ODP Leg 209 (Sites 1272A and 1274A): implications for lithium and boron budgets of oceanic lithosphere. Geochimica et Cosmochimica Acta  72, 5475– 5504. Google Scholar CrossRef Search ADS   Woodland A. B., Seitz H. M., Yaxley G. M. ( 2004). Varying behaviour of Li in metasomatised spinel peridotite xenoliths from western Victoria, Australia. Lithos  75, 55– 66. Google Scholar CrossRef Search ADS   Xiao Y., Zhang H. F., Su B. X., Zhu B., Chen B., Chen C., Sakyi P. A. ( 2017). Partial melting control of lithium concentrations and isotopes in the Cenozoic lithospheric mantle beneath Jiande area, the Cathaysia block of SE China. Chemical Geology  466, 750– 761. Google Scholar CrossRef Search ADS   Xiao Y., Teng F. Z., Su B. X., Hu Y., Zhou M. F., Zhu B., Shi R. D., Huang Q. S., Gong X. H., He Y. S. ( 2016). Iron and magnesium isotopic constraints on the origin of chemical heterogeneity in podiform chromitite from the Luobusa ophiolite, Tibet. Geochemistry, Geophysics, Geosystems  17, 940– 953. Google Scholar CrossRef Search ADS   Zack T., Tomascak P. B., Rudnick R. L., Dalpe C., McDonough W. F. ( 2003). Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust. Earth and Planetary Science Letters  208, 279– 290. Google Scholar CrossRef Search ADS   Zhou M. F., Robinson P. T., Bai W. J. ( 1994). Formation of podiform chromitites by melt/rock interaction in the upper mantle. Mineralium Deposita  29, 98– 101. Google Scholar CrossRef Search ADS   Zhou M. F., Robinson P. T., Malpas J., Li Z. ( 1996). Podiform chromites in the Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology  37, 3– 21. Google Scholar CrossRef Search ADS   Zhou M. F., Sun M., Keays R. R., Kerrich R. ( 1998). Controls on platinum-group elemental distributions of podiform chromitites: a case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochimica et Cosmochimica Acta  62, 677– 688. Google Scholar CrossRef Search ADS   Zhou M. F., Robinson P., Su B. X., Gao J. F., Li J. W., Yang J. S., Malpas J. ( 2014). Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: the role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Research  26, 262– 283. Google Scholar CrossRef Search ADS   © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Petrology Oxford University Press

Melt Penetration in Oceanic Lithosphere: Li Isotope Records from the Pozantı-Karsantı Ophiolite in Southern Turkey