Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Mass-invariance of the iron enrichment in the hot haloes of massive ellipticals, groups, and clusters of galaxies

Mass-invariance of the iron enrichment in the hot haloes of massive ellipticals, groups, and... Abstract X-ray measurements find systematically lower Fe abundances in the X-ray emitting haloes pervading groups (kT ≲ 1.7 keV) than in clusters of galaxies. These results have been difficult to reconcile with theoretical predictions. However, models using incomplete atomic data or the assumption of isothermal plasmas may have biased the best fit Fe abundance in groups and giant elliptical galaxies low. In this work, we take advantage of a major update of the atomic code in the spectral fitting package SPEX to re-evaluate the Fe abundance in 43 clusters, groups, and elliptical galaxies (the CHEERS sample) in a self-consistent analysis and within a common radius of 0.1r500. For the first time, we report a remarkably similar average Fe enrichment in all these systems. Unlike previous results, this strongly suggests that metals are synthesised and transported in these haloes with the same average efficiency across two orders of magnitude in total mass. We show that the previous metallicity measurements in low temperature systems were biased low due to incomplete atomic data in the spectral fitting codes. The reasons for such a code-related Fe bias, also implying previously unconsidered biases in the emission measure and temperature structure, are discussed. galaxies: clusters: intracluster medium, X-rays: galaxies: clusters © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press

Mass-invariance of the iron enrichment in the hot haloes of massive ellipticals, groups, and clusters of galaxies

Loading next page...
 
/lp/ou_press/mass-invariance-of-the-iron-enrichment-in-the-hot-haloes-of-massive-2swOhVBoMg
Publisher
Oxford University Press
Copyright
© 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society
ISSN
1745-3925
eISSN
1745-3933
DOI
10.1093/mnrasl/sly080
Publisher site
See Article on Publisher Site

Abstract

Abstract X-ray measurements find systematically lower Fe abundances in the X-ray emitting haloes pervading groups (kT ≲ 1.7 keV) than in clusters of galaxies. These results have been difficult to reconcile with theoretical predictions. However, models using incomplete atomic data or the assumption of isothermal plasmas may have biased the best fit Fe abundance in groups and giant elliptical galaxies low. In this work, we take advantage of a major update of the atomic code in the spectral fitting package SPEX to re-evaluate the Fe abundance in 43 clusters, groups, and elliptical galaxies (the CHEERS sample) in a self-consistent analysis and within a common radius of 0.1r500. For the first time, we report a remarkably similar average Fe enrichment in all these systems. Unlike previous results, this strongly suggests that metals are synthesised and transported in these haloes with the same average efficiency across two orders of magnitude in total mass. We show that the previous metallicity measurements in low temperature systems were biased low due to incomplete atomic data in the spectral fitting codes. The reasons for such a code-related Fe bias, also implying previously unconsidered biases in the emission measure and temperature structure, are discussed. galaxies: clusters: intracluster medium, X-rays: galaxies: clusters © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)

Journal

Monthly Notices of the Royal Astronomical Society: LettersOxford University Press

Published: May 5, 2018

There are no references for this article.