Access the full text.
Sign up today, get DeepDyve free for 14 days.
B. Litvinovsky, I. Steele, S. Wickham (2000)
Silicic Magma Formation in Overthickened Crust: Melting of Charnockite and Leucogranite at 15, 20 and 25 kbarJournal of Petrology, 41
Hongyi Li, Wei-Jou Su, Chun-yong Wang, Zhong-xian Huang (2009)
Ambient noise Rayleigh wave tomography in western Sichuan and eastern TibetEarth and Planetary Science Letters, 282
S. Mitra, K. Priestley, C. Acton, V. Gaur (2011)
Anomalous surface wave dispersion and the enigma of “continental-like” structure for the Bay of BengalJournal of Asian Earth Sciences, 42
Mahmood Alam, M. Alam, J. Curray, Masuma Chowdhury, M. Gani (2003)
An overview of the sedimentary geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill historySedimentary Geology, 155
N. Shapiro, M. Ritzwoller (2002)
Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantleGeophysical Journal International, 151
(1924)
La tectonique de l'Asie, in 13th Int
C. Nunn, S. Roecker, K. Priestley, Xiaofeng Liang, A. Gilligan (2014)
Joint inversion of surface waves and teleseismic body waves across the Tibetan collision zone: the fate of subducted Indian lithosphereGeophysical Journal International, 198
Sun‐Lin Chung, M. Chu, Yuquan Zhang, Yingwen Xie, C. Lo, T. Lee, C. Lan, Xian‐Hua Li, Q. Zhang, Yizhao Wang (2005)
Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatismEarth-Science Reviews, 68
G. Wittlinger, Jérôme Vergne, P. Tapponnier, V. Farra, G. Poupinet, M. Jiang, Huimin Su, G. Herquel, A. Paul (2004)
Teleseismic imaging of subducting lithosphere and Moho offsets beneath western TibetEarth and Planetary Science Letters, 221
M. Agius, S. Lebedev (2017)
Complex, multilayered azimuthal anisotropy beneath Tibet: evidence for co-existing channel flow and pure-shear crustal thickeningGeophysical Journal International, 210
S. Mitra, K. Priestley, A. Bhattacharyya, V. Gaur (2004)
Crustal structure and earthquake focal depths beneath northeastern India and southern TibetGeophysical Journal International, 160
L. Desheng, Liang Di-gang, Jia Chengzao, Wang Gang, Wu Qizhi, He Dengfa (1996)
Hydrocarbon Accumulations in the Tarim Basin, ChinaAAPG Bulletin, 80
(2009)
The crust and uppermost mantle structure of the Iranian Plateau
M. Agius, S. Lebedev (2013)
Tibetan and Indian lithospheres in the upper mantle beneath Tibet: Evidence from broadband surface‐wave dispersionGeochemistry, 14
D. Griot, J. Montagner, P. Tapponnier (1998)
Phase velocity structure from Rayleigh and Love waves in Tibet and its neighboring regionsJournal of Geophysical Research, 103
M. Unsworth, W. Wenbo, A. Jones, Shenghui Li, P. Bedrosian, J. Booker, Jin Sheng, Deng Ming, Handong Tan (2004)
Crustal and upper mantle structure of northern Tibet imaged with magnetotelluric dataJournal of Geophysical Research, 109
K. Priestley, J. Jackson, D. McKenzie (2008)
Lithospheric structure and deep earthquakes beneath India, the Himalaya and southern TibetGeophysical Journal International, 172
M. Searle, John Elliott, R. Phillips, Sun‐Lin Chung (2011)
Crustal–lithospheric structure and continental extrusion of TibetJournal of the Geological Society, 168
J. Barron, K. Priestley (2009)
Observations of frequency-dependent S n propagation in Northern TibetGeophysical Journal International
R. Kind, X. Yuan, Joachim Saul, Doug Nelson, Stephan Sobolev, J. Mechie, Wenjin Zhao, G. Kosarev, James Ni, U. Achauer, M. Jiang (2002)
Seismic Images of Crust and Upper Mantle Beneath Tibet: Evidence for Eurasian Plate SubductionScience, 298
Yangfan Deng, W. Shen, T. Xu, M. Ritzwoller (2015)
Crustal layering in northeastern Tibet: a case study based on joint inversion of receiver functions and surface wave dispersionGeophysical Journal International, 203
R. Jamieson, C. Beaumont, P. Fullsack, B. Lee (1998)
Barrovian regional metamorphism: where’s the heat?Geological Society, London, Special Publications, 138
C. Acton, K. Priestley, V. Gaur, S. Rai (2010)
Group velocity tomography of the Indo-Eurasian collision zoneJournal of Geophysical Research, 115
(2004)
Computer Programs in Seismology
M. Ritzwoller, N. Shapiro, M. Barmin, A. Levshin (2002)
Global surface wave diffraction tomographyJournal of Geophysical Research, 107
Catherine Brandon, B. Romanowicz (1986)
A “no-lid” zone in the central Chang-Thang platform of Tibet: Evidence from pure path phase velocity measurements of long period Rayleigh wavesJournal of Geophysical Research, 91
K. Priestley, É. Debayle, Dan Kenzie, S. Pilidou (2006)
Upper mantle structure of eastern Asia from multimode surface waveform tomographyJournal of Geophysical Research, 111
A. Levshin, M. Ritzwoller (2001)
Automated Detection, Extraction, and Measurement of Regional Surface Wavespure and applied geophysics, 158
I. Dricker, S. Roecker (2002)
Lateral heterogeneity in the upper mantle beneath the Tibetan plateau and its surroundings from SS‐S travel time residualsJournal of Geophysical Research, 107
B. Hacker, E. Gnos, L. Ratschbacher, M. Grove, M. Mcwilliams, Stephen Sobolev, Jiang Wan, Zhenhan Wu (2000)
Hot and dry deep crustal xenoliths from tibetScience, 287 5462
Jiayi Xie, M. Ritzwoller, W. Shen, Weitao Wang (2017)
Crustal anisotropy across eastern Tibet and surroundings modeled as a depth-dependent tilted hexagonally symmetric mediumGeophysical Journal International, 209
A. Gilligan, K. Priestley, S. Roecker, V. Levin, S. Rai (2015)
The crustal structure of the western Himalayas and TibetJournal of Geophysical Research: Solid Earth, 120
Zhi Guo, Xing Gao, H. Yao, Juan Li, Weimin Wang (2009)
Midcrustal low‐velocity layer beneath the central Himalaya and southern Tibet revealed by ambient noise array tomographyGeochemistry, 10
J. Nábělek, G. Hetényi, Jérôme Vergne, S. Sapkota, B. Kafle, M. Jiang, H. Su, John Chen, Bor‐Shouh Huang (2009)
Underplating in the Himalaya-Tibet Collision Zone Revealed by the Hi-CLIMB ExperimentScience, 325
P. Molnar (1990)
S-wave residuals from earthquakes in the Tibetan region and lateral variations in the upper mantleEarth and Planetary Science Letters, 101
P. Sass, O. Ritter, L. Ratschbacher, J. Tympel, V. Matiukov, A. Rybin, V. Batalev (2014)
Resistivity structure underneath the Pamir and Southern Tian ShanGeophysical Journal International, 198
R. Jamieson, C. Beaumont, S. Medvedev, M. Nguyen (2004)
Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogenJournal of Geophysical Research, 109
Y. Makovsky, S. Klemperer, L. Ratschbacher, L. Brown, Ming Li, Wenjin Zhao, Fanle Meng (1996)
INDEPTH Wide-Angle Reflection Observation of P-Wave-to-S-Wave Conversion from Crustal Bright Spots in TibetScience, 274
(2006)
Crustal flow in Tibet : geophysical evidence for the physical state of Tibetan lithosphere , and inferred patterns of active flow
P. Wessel, W. Smith, R. Scharroo, J. Luis, F. Wobbe (2013)
Generic Mapping Tools: Improved Version ReleasedEos, Transactions American Geophysical Union, 94
T. Owens, G. Zandt (1997)
Implications of crustal property variations for models of Tibetan plateau evolutionnature, 387
P. Molnar, P. England, J. Martinod (1993)
Mantle dynamics, uplift of the Tibetan Plateau, and the Indian MonsoonReviews of Geophysics, 31
S. Rai, K. Priestley, K. Suryaprakasam, D. Srinagesh, V. Gaur, Z. Du (2003)
Crustal shear velocity structure of the south Indian shieldJournal of Geophysical Research, 108
K. Kaila, V. Krishna (1992)
Deep seismic sounding studies in India and major discoveriesCurrent Science, 62
A. Gilligan, S. Roecker, K. Priestley, C. Nunn (2014)
Shear velocity model for the Kyrgyz Tien Shan from joint inversion of receiver function and surface wave dataGeophysical Journal International, 199
D. McKenzie, K. Priestley (2008)
The influence of lithospheric thickness variations on continental evolutionLithos, 102
X. Bao, Xiaoxiao Sun, Mingjie Xu, D. Eaton, Xiaodong Song, Liangshu Wang, Z. Ding, N. Mi, Hua Li, Dayong Yu, Zhouchuan Huang, Pan Wang (2015)
Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functionsEarth and Planetary Science Letters, 415
(1972)
Frequency - time analysis of oscillations
B. Kennett, E. Engdahl, R. Buland (1995)
Constraints on seismic velocities in the Earth from traveltimesGeophysical Journal International, 122
J. Ni, M. Barazangi (1983)
High-frequency seismic wave propagation beneath the Indian Shield, Himalayan Arc, Tibetan Plateau and surrounding regions: high uppermost mantle velocities and efficient Sn propagation beneath TibetGeophysical Journal International, 72
Dziewonski (1969)
427Bull. seism. Soc. Am., 59
J. Ligorría, C. Ammon (1999)
Iterative deconvolution and receiver-function estimationBulletin of the Seismological Society of America, 89
S. Mitra, K. Priestley, V. Gaur, S. Rai, J. Haines (2006)
Variation of Rayleigh wave group velocity dispersion and seismic heterogeneity of the Indian crust and uppermost mantleGeophysical Journal International, 164
Yingjie Yang, M. Ritzwoller, Yong Zheng, W. Shen, A. Levshin, Z. Xie (2011)
A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath TibetJournal of Geophysical Research, 117
K. Chun, T. Yoshii (1977)
Crustal structure of the Tibetan Plateau: A surface-wave study by a moving window analysisBulletin of the Seismological Society of America
Chengxin Jiang, Yingjie Yang, Yong Zheng (2014)
Penetration of mid-crustal low velocity zone across the Kunlun Fault in the NE Tibetan Plateau revealed by ambient noise tomographyEarth and Planetary Science Letters, 406
Kajaljyoti Borah, S. Rai, K. Prakasam, Sandeep Gupta, K. Priestley, V. Gaur (2014)
Seismic imaging of crust beneath the Dharwar Craton, India, from ambient noise and teleseismic receiver function modellingGeophysical Journal International, 197
K. Nelson, Wenjin Zhao, L. Brown, J. Kuo, J. Che, Xianwen Liu, S. Klemperer, Y. Makovsky, R. Meissner, J. Mechie, R. Kind, F. Wenzel, J. Ni, J. Nábělek, Leshou Chen, H. Tan, Wenbo Wei, A. Jones, J. Booker, M. Unsworth, W. Kidd, M. Hauck, D. Alsdorf, A. Ross, M. Cogan, Changde Wu, E. Sandvol, M. Edwards (1996)
Partially Molten Middle Crust Beneath Southern Tibet: Synthesis of Project INDEPTH ResultsScience, 274
D. McKenzie, K. Priestley (2016)
Speculations on the formation of cratons and cratonic basinsEarth and Planetary Science Letters, 435
Sandeep Gupta, S. Rai, K. Prakasam, D. Srinagesh, B. Bansal, R. Chadha, K. Priestley, V. Gaur (2003)
The nature of the crust in southern India: Implications for Precambrian crustal evolutionGeophysical Research Letters, 30
(1997)
A global digital map of sediment thickness
C. Acton, K. Priestley, S. Mitra, V. Gaur (2011)
Crustal structure of the Darjeeling—Sikkim Himalaya and southern TibetGeophysical Journal International, 184
W. Caldwell, S. Klemperer, S. Rai, J. Lawrence (2009)
Partial melt in the upper-middle crust of the northwest Himalaya revealed by Rayleigh wave dispersionTectonophysics, 477
L. Brown, Wenjin Zhao, K. Nelson, M. Hauck, D. Alsdorf, A. Ross, M. Cogan, M. Clark, Xianwen Liu, J. Che (1996)
Bright Spots, Structure, and Magmatism in Southern Tibet from INDEPTH Seismic Reflection ProfilingScience, 274
N. Christensen (1979)
Compressional wave velocities in rocks at high temperatures and pressures, critical thermal gradients, and crustal low‐velocity zonesJournal of Geophysical Research, 84
S. Rai, K. Priestley, V. Gaur, S. Mitra, M. Singh, M. Searle (2006)
Configuration of the Indian Moho beneath the NW Himalaya and LadakhGeophysical Research Letters, 33
Wenbo Wei, M. Unsworth, A. Jones, J. Booker, H. Tan, D. Nelson, Leshou Chen, Shenghui Li, K. Solon, P. Bedrosian, Sheng Jin, M. Deng, J. Ledo, D. Kay, B. Roberts (2001)
Detection of Widespread Fluids in the Tibetan Crust by Magnetotelluric StudiesScience, 292
N. Cotte, H. Pedersen, M. Campillo, J. Mars, J. Ni, R. Kind, E. Sandvol, Wenjin Zhao (1999)
Determination of the crustal structure in southern Tibet by dispersion and amplitude analysis of Rayleigh wavesGeophysical Journal International, 138
Zhongjie Zhang, Yangfan Deng, J. Teng, Chun-yong Wang, R. Gao, Yun Chen, W. Fan (2011)
An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundingsJournal of Asian Earth Sciences, 40
Richard Rapine, F. Tilmann, M. West, J. Ni, A. Rodgers (2003)
Crustal structure of northern and southern Tibet from surface wave dispersion analysisJournal of Geophysical Research, 108
Argand (1924)
171in 13th Int. Geol. Cong., Comptes Rendus, Brussels, 5
M. Agius, S. Lebedev (2014)
Shear-velocity structure, radial anisotropy and dynamics of the Tibetan crustGeophysical Journal International, 199
B. Hacker, M. Ritzwoller, J. Xie (2014)
Partially melted, mica‐bearing crust in Central TibetTectonics, 33
Lupei Zhu, T. Owens, G. Randall (1995)
Lateral variation in crustal structure of the northern Tibetan Plateau inferred from teleseismic receiver functionsBulletin of the Seismological Society of America
G. Houseman, D. McKenzie, P. Molnar (1981)
Convective instability of a thickened boundary layer and its relevance for the thermal evolution of
Wenjin Zhao, K. Nelson, J. Che, J. Quo, D. Lu, C. Wu, X. Liu (1993)
Deep seismic reflection evidence for continental underthrusting beneath southern TibetNature, 366
Desheng (1996)
1587AAPG Bull., 80
N. Shapiro, M. Ritzwoller, P. Molnar, V. Levin (2004)
Thinning and Flow of Tibetan Crust Constrained by Seismic AnisotropyScience, 305
Zhongjie Zhang, Yanghua Wang, G. Houseman, T. Xu, Zhenbo Wu, X. Yuan, Yun Chen, Xiaobo Tian, Z. Bai, J. Teng (2014)
The Moho beneath western Tibet: Shear zones and eclogitization in the lower crustEarth and Planetary Science Letters, 408
D. McNamara, W. Walter, T. Owens, C. Ammon (1997)
Upper mantle velocity structure beneath the Tibetan Plateau from Pn travel time tomographyJournal of Geophysical Research, 102
Jiayi Xie, M. Ritzwoller, W. Shen, Yingjie Yang, Yong Zheng, Long-Quan Zhou (2013)
Crustal radial anisotropy across Eastern Tibet and the Western Yangtze CratonJournal of Geophysical Research: Solid Earth, 118
G. Bensen, M. Ritzwoller, M. Barmin, A. Levshin, F. Lin, M. Moschetti, N. Shapiro, Yingjie Yang (2007)
Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurementsGeophysical Journal International, 169
Hongyi Li, Yang Shen, Zhong-xian Huang, Xinfu Li, M. Gong, D. Shi, E. Sandvol, Aibing Li (2014)
The Distribution of the Mid-to-Lower Crustal Low-Velocity Zone Beneath the Northeastern Tibetan Plateau Revealed from Ambient Noise TomographyJournal of Geophysical Research, 119
A. Dziewoński, S. Bloch, M. Landisman (1969)
A technique for the analysis of transient seismic signalsBulletin of the Seismological Society of America, 59
S. Pilidou, K. Priestley, Ó. Gudmundsson, É. Debayle (2004)
Upper mantle S-wave speed heterogeneity and anisotropy beneath the North Atlantic from regional surface wave tomography: the Iceland and Azores plumesGeophysical Journal International, 159
K. Priestley, D. McKenzie (2006)
The thermal structure of the lithosphere from shear wave velocitiesEarth and Planetary Science Letters, 244
K. Priestley, D. McKenzie (2013)
The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantleEarth and Planetary Science Letters, 381
(1924)
La tectonique de l ’ Asie
Xiaoxiao Sun, X. Bao, Mingjie Xu, D. Eaton, Xiaodong Song, Liangshu Wang, Z. Ding, N. Mi, Dayong Yu, Hua Li (2014)
Crustal structure beneath SE Tibet from joint analysis of receiver functions and Rayleigh wave dispersionGeophysical Research Letters, 41
É. Debayle, Y. Ricard (2012)
Seismic observations of large-scale deformation at the bottom of fast-moving platesEarth and Planetary Science Letters, 376
Summary The processes involved in continental collisions remain contested, yet knowledge of these processes is crucial to improving our understanding of how some of the most dramatic features on Earth have formed. As the largest and highest orogenic plateau on Earth today, Tibet is an excellent natural laboratory for investigating collisional processes. To understand the development of the Tibetan Plateau we need to understand the crustal structure beneath both Tibet and the Indian Plate. Building on previous work, we measure new group velocity dispersion curves using data from regional earthquakes (4424 paths) and ambient noise data (5696 paths), and use these to obtain new fundamental mode Rayleigh Wave group velocity maps for periods from 5-70 s for a region including Tibet, Pakistan and India. The dense path coverage at the shortest periods, due to the inclusion of ambient noise measurements, allows features of up to 100 km scale to be resolved in some areas of the collision zone, providing one of the highest resolution models of the crust and uppermost mantle across this region. We invert the Rayleigh wave group velocity maps for shear wave velocity structure to 120 km depth and construct a 3D velocity model for the crust and uppermost mantle of the Indo-Eurasian collision zone. We use this 3D model to map the lateral variations in the crust and in the nature of the crust-mantle transition (Moho) across the Indo-Eurasian collision zone. The Moho occurs at lower shear velocities below north eastern Tibet than it does beneath western and southern Tibet and below India. The east–west difference across Tibet is particularly apparent in the elevated velocities observed west of 84° E at depths exceeding 90 km. This suggests that Indian lithosphere underlies the whole of the Plateau in the west, but possibly not in the east. At depths of 20-40 km our crustal model shows the existence of a pervasive mid-crustal low velocity layer (∼10% decrease in velocity, Vs <3.4 km/s) throughout all of Tibet, as well as beneath the Pamirs, but not below India. The thickness of this layer, the lowest velocity in the layer and the degree of velocity reduction vary across the region. Combining our Rayleigh wave observations with previously published Love wave dispersion measurements (Acton et al., 2010), we find that the low velocity layer has a radial anisotropic signature with Vsh > Vsv. The characteristics of the low velocity layer are supportive of deformation occurring through ductile flow in the mid-crust. Continental tectonics: compressional, Surface waves and free oscillations, Crustal imaging, Tomography, Asia © The Author(s) 2018. Published by Oxford University Press on behalf of The Royal Astronomical Society. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)
Geophysical Journal International – Oxford University Press
Published: May 3, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.