Intraoperative Magnetic Resonance Imaging with the Magnetom Open Scanner: Concepts, Neurosurgical Indications, and Procedures: A Preliminary Report

Intraoperative Magnetic Resonance Imaging with the Magnetom Open Scanner: Concepts, Neurosurgical... AbstractOBJECTIVE:Intraoperative magnetic resonance imaging (MRI) is now available with the General Electric MRI system for dedicated intraoperative use. Alternatively, non-dedicated MRI systems require fewer specific adaptations of instrumentation and surgical techniques. In this report, clinical experiences with such a system are presented.METHODS:All patients were surgically treated in a “twin operating theater,” consisting of a conventional operating theater with complete neuronavigation equipment (StealthStation and MKM), which allowed surgery with magnetically incompatible instruments, conventional instrumentation and operating microscope, and a radiofrequencyshielded operating room designed for use with an intraoperative MRI scanner (Magnetom Open; Siemens AG, Erlangen, Germany). The Magnetom Open is a 0.2-T MRI scanner with a resistive magnet and specific adaptations that are necessary to integrate the scanner into the surgical environment. The operating theaters lie close together, and patients can be intraoperatively transported from one room to the other. This retrospective analysis includes 55 patients with cerebral lesions, all of whom were surgically treated between March 1996 and September 1997RESULTS:Thirty-one patients with supratentorial tumors were surgically treated (with navigational guidance) in the conventional operating room, with intraoperative MRI for resection control. For 5 of these 31 patients, intraoperative resection control revealed significant tumor remnants, which led to further tumor resection guided by the information provided by intraoperative MRI. Intraoperative MRI resection control was performed in 18transsphenoidal operations. In cases with suspected tumor remnants, the surgeon reexplored the sellar region; additional tumor tissue was removed in three of five cases. Follow-up scans were obtained for all patients 1 week and 2 to 3 months after surgery. For 14 of the 18 patients, the images obtained intraoperatively were comparable to those obtained after 2 to 3 months. Intraoperative MRI was also used for six patients undergoing temporal lobe resections for treatment of pharmacoresistant seizures. For these patients, the extent of neocortical and mesial resection was tailored to fit the preoperative findings of morphological and electrophysiological alterations, as well as intraoperative electrocorticographic findings.CONCLUSION:Intraoperative MRI with the Magnetom Open provides considerable additional information to optimize resection during surgical treatment of supratentorial tumors, pituitary adenomas, and epilepsy. The twin operating theater is a true alternative to a dedicated MRI system. Additional efforts are necessary to improve patient transportation time and instrument guidance within the scanner. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neurosurgery Oxford University Press

Intraoperative Magnetic Resonance Imaging with the Magnetom Open Scanner: Concepts, Neurosurgical Indications, and Procedures: A Preliminary Report

Intraoperative Magnetic Resonance Imaging with the Magnetom Open Scanner: Concepts, Neurosurgical Indications, and Procedures: A Preliminary Report

CLIN ICAL STUDIES Intraoperative Magnetic Resonance Imaging with the Magnetom Open Scanner: Concepts, Neurosurgical Indications, and Procedures: A Preliminary Report Ralf Steinmeier, M.D., Rudolf Fahlbusch, M.D., Oliver Ganslandt, M.D., Christopher Nimsky, M.D., Michael Buchfelder, M.D., Michael Kaus, Dipl.-lng., Thomas Heigl, Gerald Lenz, Ph.D., Rainer Kuth, Walter Huk, M.D. Department of Neurosurgery (RS, RF, O C , C N , MB, MK, T H ) and Division of Neuroradiology (W H), University of Erlangen-Nurnberg, and Siemens A G (GL, RK), Medical Engineering, Erlangen, Germany OBJECTIVE: Intraoperative magnetic resonance imaging (MRI) is now available with the General Electric MRI system for dedicated intraoperative use. Alternatively, non-dedicated MRI systems require fewer specific adaptations of instrumentation and surgical techniques. In this report, clinical experiences with such a system are presented. METHODS: All patients were surgically treated in a "twin operating theater," consisting of a conventional operating theater with complete neuronavigation equipment (StealthStation and MKM), which allowed surgery with magneti­ cally incompatible instruments, conventional instrumentation and operating microscope, and a radiofrequency- shielded operating room designed for use with an intraoperative MRI scanner (Magnetom Open; Siemens AG , Erlangen, Germany). The Magnetom Open is a 0.2-T MRI scanner with a resistive magnet and specific adaptations that are necessary to integrate the scanner into the surgical environment. The operating theaters lie close together, and patients can be intraoperatively transported from one room to the other. This retrospective analysis includes 55 patients with cerebral lesions, all of whom were surgically treated between March 1996 and September 1997. RESULTS: Thirty-one patients with supratentorial tumors were surgically treated (with navigational guidance) in the conventional operating room, with intraoperative MRI for...
Loading next page...
 
/lp/ou_press/intraoperative-magnetic-resonance-imaging-with-the-magnetom-open-eJV7OINr9X
Publisher
Congress of Neurological Surgeons
Copyright
© Published by Oxford University Press.
ISSN
0148-396X
eISSN
1524-4040
D.O.I.
10.1097/00006123-199810000-00005
Publisher site
See Article on Publisher Site

Abstract

AbstractOBJECTIVE:Intraoperative magnetic resonance imaging (MRI) is now available with the General Electric MRI system for dedicated intraoperative use. Alternatively, non-dedicated MRI systems require fewer specific adaptations of instrumentation and surgical techniques. In this report, clinical experiences with such a system are presented.METHODS:All patients were surgically treated in a “twin operating theater,” consisting of a conventional operating theater with complete neuronavigation equipment (StealthStation and MKM), which allowed surgery with magnetically incompatible instruments, conventional instrumentation and operating microscope, and a radiofrequencyshielded operating room designed for use with an intraoperative MRI scanner (Magnetom Open; Siemens AG, Erlangen, Germany). The Magnetom Open is a 0.2-T MRI scanner with a resistive magnet and specific adaptations that are necessary to integrate the scanner into the surgical environment. The operating theaters lie close together, and patients can be intraoperatively transported from one room to the other. This retrospective analysis includes 55 patients with cerebral lesions, all of whom were surgically treated between March 1996 and September 1997RESULTS:Thirty-one patients with supratentorial tumors were surgically treated (with navigational guidance) in the conventional operating room, with intraoperative MRI for resection control. For 5 of these 31 patients, intraoperative resection control revealed significant tumor remnants, which led to further tumor resection guided by the information provided by intraoperative MRI. Intraoperative MRI resection control was performed in 18transsphenoidal operations. In cases with suspected tumor remnants, the surgeon reexplored the sellar region; additional tumor tissue was removed in three of five cases. Follow-up scans were obtained for all patients 1 week and 2 to 3 months after surgery. For 14 of the 18 patients, the images obtained intraoperatively were comparable to those obtained after 2 to 3 months. Intraoperative MRI was also used for six patients undergoing temporal lobe resections for treatment of pharmacoresistant seizures. For these patients, the extent of neocortical and mesial resection was tailored to fit the preoperative findings of morphological and electrophysiological alterations, as well as intraoperative electrocorticographic findings.CONCLUSION:Intraoperative MRI with the Magnetom Open provides considerable additional information to optimize resection during surgical treatment of supratentorial tumors, pituitary adenomas, and epilepsy. The twin operating theater is a true alternative to a dedicated MRI system. Additional efforts are necessary to improve patient transportation time and instrument guidance within the scanner.

Journal

NeurosurgeryOxford University Press

Published: Oct 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off