Insufficient power of mitogenomic data in resolving the auchenorrhynchan monophyly

Insufficient power of mitogenomic data in resolving the auchenorrhynchan monophyly Abstract The hemipteran suborder Auchenorrhyncha consists of four superfamily rank taxa (i.e. Cicadoidea, Membracoidea, Cercopoidea and Fulgoroidea), with more than 42000 described species worldwide. The monophyly of Auchenorrhyncha and the higher-level relationships within this group remain questionable, despite recent research using morphological and molecular data. In this study, we sequenced 18 mitogenomes of representatives of Membracoidea, three of Cercopoidea and one of Psylloidea and conducted phylogenetic analyses together with 35 existing mitogenomes of Hemiptera, with special emphasis on the auchenorrhynchan monophyly. The phylogenetic inferences from the mitogenomic data are strongly affected by increased rates of sequence substitution associated with several lineages, which leads to the significant long-branch attraction. Under these conditions, the monophyly of Auchenorrhyncha is not supported even with the comprehensive data coding schemes. This shows the limitations of the mitogenome in resolving the higher-level phylogeny of Auchenorrhyncha. In addition, the removal of fast-evolving sites using a pattern sorting method (OV-sorting) significantly improves phylogenetic estimates under both homogeneous and heterogeneous models. Moreover, data sets with a higher proportion of conserved sites recover the monophyly of Auchenorrhyncha and support a superfamily relationship of [Fulgoroidea + ((Cicadoidea + Cercopoidea) + Membracoidea)]. Auchenorrhyncha, mitochondrial genome, phylogeny INTRODUCTION Auchenorrhyncha is a group within the insect order Hemiptera. Traditionally, this group has been recognized as a suborder with two main clades: Cicadomorpha and Fulgoromorpha (Hennig, 1969, 1981; Carver, Gross & Woodward, 1991). Cicadomorpha comprises three superfamilies: Cicadoidea (cicadas), Membracoidea (leafhoppers and treehoppers) and Cercopoidea (spittlebugs and froghoppers), with 35000 described species belonging to 12 extant families (Dietrich et al., 2001; Cryan, 2005). Fulgoromorpha includes only the superfamily Fulgoroidea (planthoppers) and contains more than 9000 described species across c. 20 extant families (O’Brien & Wilson, 1985; Urban & Cryan, 2007). All species of Auchenorrhyncha are phytophagous insects, many of which are considered agricultural pests. For example, some delphacid planthoppers in Fulgoroidea can reduce crop productivity through feeding damage and by transmitting plant viral diseases (Cryan & Urban, 2012; Song, Liang & Bu, 2012). Despite their economic impact, there is little phylogenetic research focused on Auchenorrhyncha and the group’s phylogeny is debated. Specifically, studies of auchenorrhynchan monophyly vary across different analytical approaches and character sets (Kristensen, 1975; Hennig, 1981; Zrzavý, 1992; Bourgoin, 1993; Campbell et al., 1995; von Dohlen & Moran, 1995; Cryan, 2005; Cryan & Urban, 2012; Song et al., 2012). Understanding the phylogenetic structure of Auchenorrhyncha will help develop a stable, natural classification scheme and serve as a framework for studying the ecological and evolutionary patterns of this insect group. Therefore, we reinvestigated the phylogeny of Auchenorrhyncha, using a new data type and taxon sampling. Detailed reviews of the morphological and molecular evidence for and against the monophyly of Auchenorrhyncha were recently summarized by Cryan & Urban (2012). Proposed characters supporting auchenorrhynchan monophyly include structures of the head, wings and abdomen (Yoshizawa & Saigusa, 2001; Cryan & Urban, 2012). Characters supporting auchenorrhynchan paraphyly include features of the alimentary canal, head capsule and female reproductive system (Forero, 2008; Cryan & Urban, 2012). Therefore, monophyly of Auchenorrhyncha is difficult to resolve with morphological characters alone. According to Bourgoin & Campbell (2002), a consensus of paraphyly was reached by studying 18S rDNA data (Campbell et al., 1995; von Dohlen & Moran, 1995; Sorensen et al., 1995; Bourgoin et al., 1999, 2001; Ouvrard et al., 2000) and fossil records (Shcherbakov, 1984, 1988, 1996; Popov & Shcherbakov, 1996). The paraphyly of Auchenorrhyncha is mainly due to a close affinity between Cicadomorpha or Fulgoromorpha and Heteropterodea (i.e. the clade Heteroptera + Coleorrhyncha). Yet, two recent studies provide new molecular evidence supporting auchenorrhynchan monophyly (Urban & Cryan, 2007; Cryan & Urban, 2012). Specifically, Cryan & Urban (2012) attempted to address the issue of auchenorrhynchan monophyly using multilocus molecular data from nuclear and mitochondrial gene fragments, although their preferred tree topology had only moderate statistical support for this group. The issue of auchenorrhynchan monophyly also pertains to the phylogenetic placement of this suborder within Hemiptera (Hennig, 1981; Zrzavý, 1992; Cryan & Urban, 2012). Evans (1963) treated Auchenorrhyncha as the sister group of a clade composed of two hemipteran suborders: Coleorrhyncha plus Sternorrhyncha. Hennig (1981) placed Auchenorrhyncha as the putative sister group of Sternorrhyncha, which was largely consistent with the hypothesis of a ‘Homoptera long regarded as a separate order’. However, a cladistic analysis of morphological characters by Zrzavý (1992) recovered Auchenorrhyncha as the sister group to Heteropterodea, while Sternorrhyncha was found to be sister to the remaining hemipteran lineages. Thus, Zrzavý (1992) refuted the monophyly of Homoptera. The majority of morphological evidence (e.g. Goodchild, 1966; Hamilton, 1981), palaeontological information and the early 18S rDNA only data sets recover Cicadomorpha and Fulgoromorpha as two independent, non-sister lineages of Hemiptera, rendering a paraphyletic Auchenorrhyncha. However, other morphology-based studies (e.g. D’Urso, 2002) and recent multilocus molecular phylogenetic analyses recover the monophyly of Auchenorrhyncha. Thus, the phylogeny of Auchenorrhyncha remains a problem for hemipterists. There have been no phylogenetic studies that examined the auchenorrhynchan monophyly with only mitogenomic data. Mitogenome sequences have been used for inferring phylogenetic relationships within Insecta at all taxonomic levels (see reviews of Simon et al., 2006; Simon & Hadrys, 2013; Cameron, 2014a, b). mtDNA has several characteristic properties, including maternal inheritance, relatively rapid rates of evolution and high genomic copy numbers (Boore, 1999), making mtDNA easy to amplify. Therefore, it has been an important marker for molecular phylogenetic analysis in insects (Timmermans et al., 2010; Cameron, 2014a, b). Mitogenome sequencing allows for much larger-scale sampling, as genome-scale data sequencing is still costly. Furthermore, the high-throughput sequencing technologies used have revolutionized approaches for obtaining complete insect mitogenomes (Timmermans et al., 2010; Gillett et al., 2014; Tang et al., 2014; Crampton-Platt et al., 2015; Timmermans et al., 2016; Nie et al., 2017). These studies significantly increase the scope of insect phylogenetic studies based on mitogenomic data. Compared to Sanger-based approaches, high-throughput sequencing can overcome the difficulty of designing species-specific primers, long-PCR amplifications and the high cost of obtaining de novo full mitogenomes (Cameron, 2014a; Gillett et al., 2014). Despite the wide use of the mitogenome in phylogenetics, it is contentious because it is a rapidly evolving organelle genome. Phylogenetic studies are limited when using only a small fraction of the total genome (Rubinoff & Holland, 2005). Indeed, phylogenetic inference within several paraneopteran taxa (i.e. Thysanoptera, Phthiraptera and Hemiptera) appears to be influenced by the accelerated substitution rates of mitogenomes (Talavera & Vila, 2011; Simon & Hadrys, 2013). Lineage-specific substitution rates have the potential to cause long-branch artefacts (LBA) (Sheffield et al., 2009; Simon & Hadrys, 2013; Li et al., 2015). Removal of problematic long-branching taxa has been applied to avoid LBA problems (Bergsten, 2005), but often the phylogenetic position of the omitted taxa is of special interest. Therefore, better data matrix treatments and increased taxon sampling are needed to improve insect mitogenomic phylogenies. Common data treatment methods include removing third codon positions (Fenn et al., 2008; Ma et al., 2009), RY coding for the first and/or third codon positions (Phillips, Delsuc & Penny, 2004; Pagès et al., 2010) and degen-coding (Regier et al., 2010; Zwick, Regier & Zwickl, 2012). The OV-sorting method recently developed by Goremykin, Nikiforova & Bininda-Emonds (2010) can sort and remove highly variable sites to generate a series of increasingly conserved alignments. This method is useful for evaluating and reducing the impact of systematic error in large-scale phylogenomic analyses (Goremykin et al., 2010). By November 2016, complete or nearly complete mitogenomes for 33 species of Auchenorrhyncha were available in GenBank. However, the most diverse superfamily Membracoidea with c. 25000 described species (Cryan, 2005) was represented by only nine. To achieve a more balanced taxon sampling and a better-resolved phylogeny of Auchenorrhyncha, we sequenced additional mitogenomes from the superfamilies Membracoidea (18 species) and Cercopoidea (three species) in Auchenorrhyncha, plus additional outgroup taxa from the family Psylloidea (Sternorrhyncha). The newly generated data were combined with the publicly available hemipteran mitogenomes to test the monophyly of Auchenorrhyncha. Maximum likelihood (ML) and Bayesian methods were used to analyse nucleotide and amino acid sequences under various coding schemes. METHODS Taxon sampling A total of 49 ingroup taxa represented all auchenorrhynchan superfamilies: 24 Membracoidea, ten Cercopoidea, five Cicadoidea and ten Fulgoromorpha (Table 1). The outgroup included three species of Psocoptera, three Heteroptera, two Sternorrhyncha and three Coleorrhyncha. The primary specimen materials used for DNA extraction were from the Entomological Museum of Henan Agricultural University (voucher numbers in Table 1). Table 1. Taxonomic information and GenBank accession numbers for the taxa included in this study Superfamily  Species  Accession number  Voucher numbers for newly sequenced species  Collecting information  Membracoidea  Darthula hardwickii  NC_026699  –  –  Membracoidea  Leptobelus gazella  NC 023219  –  –  Membracoidea  Centrotus cornutus  KX437728  MT-2015 isolate Zz041601  Vietnam, Pingxiang, 22°11′N, 106°70′E, July 2012  Membracoidea  Empoasca vitis  NC 024838  –  –  Membracoidea  Drabescoides nuchalis  NC_028154  –  –  Membracoidea  Homalodisca vitripennis  NC_006899  –  –  Membracoidea  Nephotettix cincticeps  NC_026977  –  –  Membracoidea  Balclutha sp.  KX437738  MT-2015 isolate Zz052711  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Hishimonus sp.  KX437735  MT-2015 isolate Zz052706  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Cicadula sp.  KX437724  MT-2015 isolate Zz052713  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Cuerna sp.  KX437741  MT-2015 isolate Zz052311  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Dryadomorpha sp.  KX437736  MT-2015 isolate Zz060407  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Empoasca sp.  KX437737  MT-2015 isolate Zz031203  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Exitianus indicus  KX437722  MT-2015 isolate Zz052320  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Graphocephala sp.  KX437740  MT-2015 isolate Zz052315  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Hishimonus phycitis  KX437727  MT-2015 isolate Zz052707  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Nephotettix sp.  KX437725  MT-2015 isolate Zz053036  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Osbornellus sp.  KX437739  MT-2015 isolate Zz052506  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Petalocephala ochracea  KX437734  MT-2015 isolate 15052715  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Phlogotettix sp.  KX437721  MT-2015 isolate Zz052705  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Psammotettix sp.  KX437742  MT-2015 isolate Zz060503  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Sophonia linealis  KX437723  MT-2015 isolate Zz052717  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Atkinsoniclla sp.  KX437743  MT-2015 isolate Zz060410  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Athysanopsis sp.  KX437726  MT-2015 isolate Zz052318  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Philaenus spumarius  AY630340  –  –  Cercopoidea  Callitettix versicolor  EU725832  –  –  Cercopoidea  Callitettix braconoides  NC_025497  –  –  Cercopoidea  Callitettix biformis  NC_025496  –  –  Cercopoidea  Abidama producta  NC 015799  –  –  Cercopoidea  Aeneolamia contigua  NC_025495  –  –  Cercopoidea  Cosmoscarta bispecularis  NC_026289  –  –  Cercopoidea  Paphnutius ruficeps  KX437731  MT-2015 isolate Zz052908  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Aphrophora intermedia  KX437729  MT-2015 isolate Zz062722  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Clovia sp.  KX437730  MT-2015 isolate Zz052918  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cicadoidea  Magicicada tredecim  KM000130  –  –  Cicadoidea  Gaeana maculata  KM244671  –  –  Cicadoidea  Tettigades auropilosa  KM000129  –  –  Cicadoidea  Tettigades ulnaria  KM000128  –  –  Cicadoidea  Diceroprocta semicincta  KM000131  –  –  Fulgoroidea  Laodelphax striatellus  FJ360695  –  –  Fulgoroidea  Laodelphax striatella  JX880068  –  –  Fulgoroidea  Nilaparvata lugens  JN563995  –  –  Fulgoroidea  Sogatella furcifera  NC_021417  –  –  Fulgoroidea  Nilaparvata muiri  NC_024627  –  –  Fulgoroidea  Lycorma delicatula  EU909203  –  –  Fulgoroidea  Pyrops candelaria  FJ006724  –  –  Fulgoroidea  Ricania marginalis  JN242415  –  –  Fulgoroidea  Geisha distinctissima  FJ230961  –  –  Fulgoroidea  Sivaloka damnosus  FJ360694  –  –  Peloridioidea  Xenophyes cascus  JF323862  –  –  Peloridioidea  Hemiodoecus leai  NC_025329  –  –  Peloridioidea  Hackeriella veitchi  NC_020309  –  –  Psylloidea  Pachypsylla venusta  AY263317  –  –  Psylloidea  Cacopsylla chinensis  KX437732  MT-2015 isolate Zz060501  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cimicoidea  Riptortus pedestris  EU427344  –  –  Cimicoidea  Hydaropsis longirostris  EU427337  –  –  Lygaeoidea  Geocoris pallidipennis  EU427336  –  –  Atropetae  Lepidopsocidae sp.  AF335994  –  –  Psocetae  Longivalvus hyalospilus  JQ910986  –  –  Psocetae  Psococerastis albimaculata  NC_021400  –  –  Superfamily  Species  Accession number  Voucher numbers for newly sequenced species  Collecting information  Membracoidea  Darthula hardwickii  NC_026699  –  –  Membracoidea  Leptobelus gazella  NC 023219  –  –  Membracoidea  Centrotus cornutus  KX437728  MT-2015 isolate Zz041601  Vietnam, Pingxiang, 22°11′N, 106°70′E, July 2012  Membracoidea  Empoasca vitis  NC 024838  –  –  Membracoidea  Drabescoides nuchalis  NC_028154  –  –  Membracoidea  Homalodisca vitripennis  NC_006899  –  –  Membracoidea  Nephotettix cincticeps  NC_026977  –  –  Membracoidea  Balclutha sp.  KX437738  MT-2015 isolate Zz052711  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Hishimonus sp.  KX437735  MT-2015 isolate Zz052706  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Cicadula sp.  KX437724  MT-2015 isolate Zz052713  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Cuerna sp.  KX437741  MT-2015 isolate Zz052311  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Dryadomorpha sp.  KX437736  MT-2015 isolate Zz060407  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Empoasca sp.  KX437737  MT-2015 isolate Zz031203  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Exitianus indicus  KX437722  MT-2015 isolate Zz052320  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Graphocephala sp.  KX437740  MT-2015 isolate Zz052315  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Hishimonus phycitis  KX437727  MT-2015 isolate Zz052707  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Nephotettix sp.  KX437725  MT-2015 isolate Zz053036  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Osbornellus sp.  KX437739  MT-2015 isolate Zz052506  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Petalocephala ochracea  KX437734  MT-2015 isolate 15052715  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Phlogotettix sp.  KX437721  MT-2015 isolate Zz052705  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Psammotettix sp.  KX437742  MT-2015 isolate Zz060503  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Sophonia linealis  KX437723  MT-2015 isolate Zz052717  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Atkinsoniclla sp.  KX437743  MT-2015 isolate Zz060410  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Athysanopsis sp.  KX437726  MT-2015 isolate Zz052318  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Philaenus spumarius  AY630340  –  –  Cercopoidea  Callitettix versicolor  EU725832  –  –  Cercopoidea  Callitettix braconoides  NC_025497  –  –  Cercopoidea  Callitettix biformis  NC_025496  –  –  Cercopoidea  Abidama producta  NC 015799  –  –  Cercopoidea  Aeneolamia contigua  NC_025495  –  –  Cercopoidea  Cosmoscarta bispecularis  NC_026289  –  –  Cercopoidea  Paphnutius ruficeps  KX437731  MT-2015 isolate Zz052908  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Aphrophora intermedia  KX437729  MT-2015 isolate Zz062722  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Clovia sp.  KX437730  MT-2015 isolate Zz052918  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cicadoidea  Magicicada tredecim  KM000130  –  –  Cicadoidea  Gaeana maculata  KM244671  –  –  Cicadoidea  Tettigades auropilosa  KM000129  –  –  Cicadoidea  Tettigades ulnaria  KM000128  –  –  Cicadoidea  Diceroprocta semicincta  KM000131  –  –  Fulgoroidea  Laodelphax striatellus  FJ360695  –  –  Fulgoroidea  Laodelphax striatella  JX880068  –  –  Fulgoroidea  Nilaparvata lugens  JN563995  –  –  Fulgoroidea  Sogatella furcifera  NC_021417  –  –  Fulgoroidea  Nilaparvata muiri  NC_024627  –  –  Fulgoroidea  Lycorma delicatula  EU909203  –  –  Fulgoroidea  Pyrops candelaria  FJ006724  –  –  Fulgoroidea  Ricania marginalis  JN242415  –  –  Fulgoroidea  Geisha distinctissima  FJ230961  –  –  Fulgoroidea  Sivaloka damnosus  FJ360694  –  –  Peloridioidea  Xenophyes cascus  JF323862  –  –  Peloridioidea  Hemiodoecus leai  NC_025329  –  –  Peloridioidea  Hackeriella veitchi  NC_020309  –  –  Psylloidea  Pachypsylla venusta  AY263317  –  –  Psylloidea  Cacopsylla chinensis  KX437732  MT-2015 isolate Zz060501  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cimicoidea  Riptortus pedestris  EU427344  –  –  Cimicoidea  Hydaropsis longirostris  EU427337  –  –  Lygaeoidea  Geocoris pallidipennis  EU427336  –  –  Atropetae  Lepidopsocidae sp.  AF335994  –  –  Psocetae  Longivalvus hyalospilus  JQ910986  –  –  Psocetae  Psococerastis albimaculata  NC_021400  –  –  Mitogenomes newly sequenced in this study are indicated in bold. View Large Table 1. Taxonomic information and GenBank accession numbers for the taxa included in this study Superfamily  Species  Accession number  Voucher numbers for newly sequenced species  Collecting information  Membracoidea  Darthula hardwickii  NC_026699  –  –  Membracoidea  Leptobelus gazella  NC 023219  –  –  Membracoidea  Centrotus cornutus  KX437728  MT-2015 isolate Zz041601  Vietnam, Pingxiang, 22°11′N, 106°70′E, July 2012  Membracoidea  Empoasca vitis  NC 024838  –  –  Membracoidea  Drabescoides nuchalis  NC_028154  –  –  Membracoidea  Homalodisca vitripennis  NC_006899  –  –  Membracoidea  Nephotettix cincticeps  NC_026977  –  –  Membracoidea  Balclutha sp.  KX437738  MT-2015 isolate Zz052711  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Hishimonus sp.  KX437735  MT-2015 isolate Zz052706  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Cicadula sp.  KX437724  MT-2015 isolate Zz052713  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Cuerna sp.  KX437741  MT-2015 isolate Zz052311  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Dryadomorpha sp.  KX437736  MT-2015 isolate Zz060407  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Empoasca sp.  KX437737  MT-2015 isolate Zz031203  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Exitianus indicus  KX437722  MT-2015 isolate Zz052320  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Graphocephala sp.  KX437740  MT-2015 isolate Zz052315  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Hishimonus phycitis  KX437727  MT-2015 isolate Zz052707  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Nephotettix sp.  KX437725  MT-2015 isolate Zz053036  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Osbornellus sp.  KX437739  MT-2015 isolate Zz052506  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Petalocephala ochracea  KX437734  MT-2015 isolate 15052715  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Phlogotettix sp.  KX437721  MT-2015 isolate Zz052705  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Psammotettix sp.  KX437742  MT-2015 isolate Zz060503  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Sophonia linealis  KX437723  MT-2015 isolate Zz052717  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Atkinsoniclla sp.  KX437743  MT-2015 isolate Zz060410  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Athysanopsis sp.  KX437726  MT-2015 isolate Zz052318  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Philaenus spumarius  AY630340  –  –  Cercopoidea  Callitettix versicolor  EU725832  –  –  Cercopoidea  Callitettix braconoides  NC_025497  –  –  Cercopoidea  Callitettix biformis  NC_025496  –  –  Cercopoidea  Abidama producta  NC 015799  –  –  Cercopoidea  Aeneolamia contigua  NC_025495  –  –  Cercopoidea  Cosmoscarta bispecularis  NC_026289  –  –  Cercopoidea  Paphnutius ruficeps  KX437731  MT-2015 isolate Zz052908  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Aphrophora intermedia  KX437729  MT-2015 isolate Zz062722  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Clovia sp.  KX437730  MT-2015 isolate Zz052918  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cicadoidea  Magicicada tredecim  KM000130  –  –  Cicadoidea  Gaeana maculata  KM244671  –  –  Cicadoidea  Tettigades auropilosa  KM000129  –  –  Cicadoidea  Tettigades ulnaria  KM000128  –  –  Cicadoidea  Diceroprocta semicincta  KM000131  –  –  Fulgoroidea  Laodelphax striatellus  FJ360695  –  –  Fulgoroidea  Laodelphax striatella  JX880068  –  –  Fulgoroidea  Nilaparvata lugens  JN563995  –  –  Fulgoroidea  Sogatella furcifera  NC_021417  –  –  Fulgoroidea  Nilaparvata muiri  NC_024627  –  –  Fulgoroidea  Lycorma delicatula  EU909203  –  –  Fulgoroidea  Pyrops candelaria  FJ006724  –  –  Fulgoroidea  Ricania marginalis  JN242415  –  –  Fulgoroidea  Geisha distinctissima  FJ230961  –  –  Fulgoroidea  Sivaloka damnosus  FJ360694  –  –  Peloridioidea  Xenophyes cascus  JF323862  –  –  Peloridioidea  Hemiodoecus leai  NC_025329  –  –  Peloridioidea  Hackeriella veitchi  NC_020309  –  –  Psylloidea  Pachypsylla venusta  AY263317  –  –  Psylloidea  Cacopsylla chinensis  KX437732  MT-2015 isolate Zz060501  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cimicoidea  Riptortus pedestris  EU427344  –  –  Cimicoidea  Hydaropsis longirostris  EU427337  –  –  Lygaeoidea  Geocoris pallidipennis  EU427336  –  –  Atropetae  Lepidopsocidae sp.  AF335994  –  –  Psocetae  Longivalvus hyalospilus  JQ910986  –  –  Psocetae  Psococerastis albimaculata  NC_021400  –  –  Superfamily  Species  Accession number  Voucher numbers for newly sequenced species  Collecting information  Membracoidea  Darthula hardwickii  NC_026699  –  –  Membracoidea  Leptobelus gazella  NC 023219  –  –  Membracoidea  Centrotus cornutus  KX437728  MT-2015 isolate Zz041601  Vietnam, Pingxiang, 22°11′N, 106°70′E, July 2012  Membracoidea  Empoasca vitis  NC 024838  –  –  Membracoidea  Drabescoides nuchalis  NC_028154  –  –  Membracoidea  Homalodisca vitripennis  NC_006899  –  –  Membracoidea  Nephotettix cincticeps  NC_026977  –  –  Membracoidea  Balclutha sp.  KX437738  MT-2015 isolate Zz052711  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Hishimonus sp.  KX437735  MT-2015 isolate Zz052706  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Cicadula sp.  KX437724  MT-2015 isolate Zz052713  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Cuerna sp.  KX437741  MT-2015 isolate Zz052311  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Dryadomorpha sp.  KX437736  MT-2015 isolate Zz060407  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Empoasca sp.  KX437737  MT-2015 isolate Zz031203  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Exitianus indicus  KX437722  MT-2015 isolate Zz052320  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Graphocephala sp.  KX437740  MT-2015 isolate Zz052315  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Hishimonus phycitis  KX437727  MT-2015 isolate Zz052707  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Nephotettix sp.  KX437725  MT-2015 isolate Zz053036  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Osbornellus sp.  KX437739  MT-2015 isolate Zz052506  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Petalocephala ochracea  KX437734  MT-2015 isolate 15052715  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Phlogotettix sp.  KX437721  MT-2015 isolate Zz052705  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Psammotettix sp.  KX437742  MT-2015 isolate Zz060503  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Sophonia linealis  KX437723  MT-2015 isolate Zz052717  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Atkinsoniclla sp.  KX437743  MT-2015 isolate Zz060410  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Athysanopsis sp.  KX437726  MT-2015 isolate Zz052318  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Philaenus spumarius  AY630340  –  –  Cercopoidea  Callitettix versicolor  EU725832  –  –  Cercopoidea  Callitettix braconoides  NC_025497  –  –  Cercopoidea  Callitettix biformis  NC_025496  –  –  Cercopoidea  Abidama producta  NC 015799  –  –  Cercopoidea  Aeneolamia contigua  NC_025495  –  –  Cercopoidea  Cosmoscarta bispecularis  NC_026289  –  –  Cercopoidea  Paphnutius ruficeps  KX437731  MT-2015 isolate Zz052908  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Aphrophora intermedia  KX437729  MT-2015 isolate Zz062722  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Clovia sp.  KX437730  MT-2015 isolate Zz052918  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cicadoidea  Magicicada tredecim  KM000130  –  –  Cicadoidea  Gaeana maculata  KM244671  –  –  Cicadoidea  Tettigades auropilosa  KM000129  –  –  Cicadoidea  Tettigades ulnaria  KM000128  –  –  Cicadoidea  Diceroprocta semicincta  KM000131  –  –  Fulgoroidea  Laodelphax striatellus  FJ360695  –  –  Fulgoroidea  Laodelphax striatella  JX880068  –  –  Fulgoroidea  Nilaparvata lugens  JN563995  –  –  Fulgoroidea  Sogatella furcifera  NC_021417  –  –  Fulgoroidea  Nilaparvata muiri  NC_024627  –  –  Fulgoroidea  Lycorma delicatula  EU909203  –  –  Fulgoroidea  Pyrops candelaria  FJ006724  –  –  Fulgoroidea  Ricania marginalis  JN242415  –  –  Fulgoroidea  Geisha distinctissima  FJ230961  –  –  Fulgoroidea  Sivaloka damnosus  FJ360694  –  –  Peloridioidea  Xenophyes cascus  JF323862  –  –  Peloridioidea  Hemiodoecus leai  NC_025329  –  –  Peloridioidea  Hackeriella veitchi  NC_020309  –  –  Psylloidea  Pachypsylla venusta  AY263317  –  –  Psylloidea  Cacopsylla chinensis  KX437732  MT-2015 isolate Zz060501  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cimicoidea  Riptortus pedestris  EU427344  –  –  Cimicoidea  Hydaropsis longirostris  EU427337  –  –  Lygaeoidea  Geocoris pallidipennis  EU427336  –  –  Atropetae  Lepidopsocidae sp.  AF335994  –  –  Psocetae  Longivalvus hyalospilus  JQ910986  –  –  Psocetae  Psococerastis albimaculata  NC_021400  –  –  Mitogenomes newly sequenced in this study are indicated in bold. View Large Dna extraction Genomic DNA was individually extracted from each specimen preserved in 95–100% ethanol using the TIANamp Micro DNA Kit (Tiangen Biotech Co., Ltd) following the manufacturer’s instructions. Mitogenome assembly from next-generation sequencing data The process for assembling mitogenomes from next-generation sequencing data followed the protocol by Gillett et al. (2014). This approach was designed for mitogenome reconstruction from pooled DNA samples, with the following steps: sample and library preparation, genome sequencing with Illumina HiSeq Sequencer (Supporting Information, Table S1 and Fig. S1), searching for target mitogenome (Supporting Information, Tables S2, S3) and mitogenome annotation. The detailed protocols are provided in Supporting Information. Sequence alignment and data set concatenation Each of the 37 mitochondrial genes was aligned separately for further analysis. For protein-coding genes, stop codons were removed and aligned based on codons using the invertebrate mitochondrial genetic code in the Perl script transAlign (Bininda-Emonds, 2005). Both the mitochondrial tRNA and rRNA genes were aligned using MAFFT (version 7) under the iterative refinement method, incorporating the most accurate local (E-INS-i) pairwise alignment information (Katoh & Standley, 2013). Alignments were checked in MEGA 6 (Tamura et al., 2013). Gaps were striped with Gap Strip/Squeeze v2.1.0, with a 40% gap tolerance (http://www.hiv.lanl.gov/content/sequence/GAPSTREEZE/gap.html). All alignments were concatenated into two matrices using FASconCAT_v1.0 (Kück & Meusemann, 2010), one including RNA genes and one excluding. In addition, to alleviate the effect of substitution saturation of codon positions on phylogenetic estimation, protein-coding genes were recoded or masked to construct the following data sets: (1) PCG_AA, (2) PCG3RY, (3) PCG13RY, (4) PCGDegen, (5) Alicut_PCG and (6) Alicut_PCGRNA. The detailed interpretation of each data recoding scheme are given in Supporting Information. Sequence characteristic analyses Nucleotide composition was calculated using MEGA 6 (Supporting Information, Table S4). Sequence saturation was assessed using the index of substitution saturation (Iss) of Xia et al. (2003) as implemented in DAMBE 5 (Xia et al., 2003; Xia, 2013) (Supporting Information, Table S5). Nucleotide homogeneity across taxa was assessed for alignments of PCG, PCG3RY, PCGDegen and PCG13RY using a chi-square test (Farris et al., 1994) implemented in PAUP*4.0b10 (Swofford, 2002) (Supporting Information, Table S6-A). To explore the source of the heterogeneity of base frequencies, a chi-square test was performed based on the nucleotide data sets (PCG, PCG3RY, PCGDegen and PCG13RY) and the amino acid data set (PCG_AA) using TREE-PUZZLE ver. 5.2 (Schmidt et al., 2002) under the GTR model for nucleotides and the mtREVE model for amino acids (Supporting Information, Table S6-B). Estimates of nonsynonymous (dN) and synonymous (dS) substitution rates of concatenated protein-coding genes were obtained using the method by Yang & Nielsen (2000) and the program yn00 as implemented in PAML 4.9 (Yang, 2007) (Supporting Information, Table S7). Phylogenetic analyses Phylogenetic analyses were performed under ML and Bayesian inferences. Partitioned ML searches were carried out using IQ-TREE web server (http://iqtree.cibiv.univie.ac.at/) (Nguyen et al., 2015; Trifinopoulos et al., 2016). PartitionFinder (Lanfear et al., 2012) was used to infer optimal partitioning strategy and best-fit models (Supporting Information, Table S8). The Bayesian analyses were conducted using PhyloBayes (Lartillot & Philippe, 2004; Lartillot, Lepage & Blanquart, 2009) as implemented in the CIPRES Portal (Miller, Pfeiffer & Schwartz, 2010). The detailed parameter settings of ML and the Bayesian analyses are provided in Supporting Information. For each tree reconstruction, we used FigTree v1.4.3 (Rambaut, 2009) to visualize the topology and to calculate the corresponding branch lengths. One-way analyses of variance (ANOVAs) for branch lengths of major groups were performed in Excel 2016 (Table 2). Table 2. Nodal supports and branch lengths for major lineages in each tree Data set  Heteroptera  Psylloidea  Peloridioidea  Fulgoroidea  Cicadoidea  Cercopoidea  Membracoidea  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL    Maximum likelihood analyses using IQ-TREE  CG  100  2.79  100  7.07  100  5.53  100  5.75  100  3.79  100  3.67  100  6.1  PCG3RY  100  0.77  100  2.04  100  1.6  100  1.73  100  1.06  100  1.03  100  1.76  PCGDegen  100  0.52  100  1.15  100  0.88  100  1  100  0.62  100  0.61  100  0.99  PCG13RY  100  0.77  100  1.64  100  1.25  100  1.41  100  0.9  100  0.91  100  1.56  Alicut-PCG  100  0.36  100  0.84  100  0.78  100  0.72  100  0.54  100  0.52  100  0.88  PCG_AA  100  0.85  100  2.05  100  1.7  100  1.79  100  1.09  100  1.19  100  1.53  PCGRNA  100  1.84  100  4.59  100  3.5  100  3.86  100  2.63  100  2.55  100  3.99  PCGDegenRNA  100  0.41  100  1.02  100  0.8  100  0.92  100  0.59  100  0.53  100  0.92  Alicut-PCGRNA  100  0.31  100  0.72  100  0.65  100  0.64  100  0.41  100  0.42  100  0.71    Bayesian analyses using PhyloBayes  PCG  1  1.51  1  4.87  1  3.13  1  4.84  1  2.01  1  1.89  1  3.88  PCG3RY  1  0.45  1  1.6  1  0.96  1  1.29  1  0.53  1  0.61  1  1.03  PCGDegen  1  0.68  1  2.38  1  1.44  1  2.27  1  0.81  1  0.85  1  1.69  PCG13RY  1  0.45  1  1.78  1  1.12  1  1.77  1  0.55  1  0.61  1  1.04  Alicut-PCG  1  1.56  1  6.15  1  3.86  1  6.16  1  2.02  1  2.13  1  4.23  PCG_AA  1  1.35  1  4.22  1  3.27  1  3.44  1  1.89  1  1.99  1  3.14  PCGRNA  1  1.29  1  3.99  1  2.58  1  3.4  1  1.99  1  1.79  1  3.32  PCGDegenRNA  1  0.69  1  2.49  1  2.02  1  2.02  1  0.85  1  0.83  1  1.76  Alicut-PCGRNA  1  1.23  1  4.69  1  2.94  1  4.22  1  1.61  1  1.56  1  3.24  Data set  Heteroptera  Psylloidea  Peloridioidea  Fulgoroidea  Cicadoidea  Cercopoidea  Membracoidea  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL    Maximum likelihood analyses using IQ-TREE  CG  100  2.79  100  7.07  100  5.53  100  5.75  100  3.79  100  3.67  100  6.1  PCG3RY  100  0.77  100  2.04  100  1.6  100  1.73  100  1.06  100  1.03  100  1.76  PCGDegen  100  0.52  100  1.15  100  0.88  100  1  100  0.62  100  0.61  100  0.99  PCG13RY  100  0.77  100  1.64  100  1.25  100  1.41  100  0.9  100  0.91  100  1.56  Alicut-PCG  100  0.36  100  0.84  100  0.78  100  0.72  100  0.54  100  0.52  100  0.88  PCG_AA  100  0.85  100  2.05  100  1.7  100  1.79  100  1.09  100  1.19  100  1.53  PCGRNA  100  1.84  100  4.59  100  3.5  100  3.86  100  2.63  100  2.55  100  3.99  PCGDegenRNA  100  0.41  100  1.02  100  0.8  100  0.92  100  0.59  100  0.53  100  0.92  Alicut-PCGRNA  100  0.31  100  0.72  100  0.65  100  0.64  100  0.41  100  0.42  100  0.71    Bayesian analyses using PhyloBayes  PCG  1  1.51  1  4.87  1  3.13  1  4.84  1  2.01  1  1.89  1  3.88  PCG3RY  1  0.45  1  1.6  1  0.96  1  1.29  1  0.53  1  0.61  1  1.03  PCGDegen  1  0.68  1  2.38  1  1.44  1  2.27  1  0.81  1  0.85  1  1.69  PCG13RY  1  0.45  1  1.78  1  1.12  1  1.77  1  0.55  1  0.61  1  1.04  Alicut-PCG  1  1.56  1  6.15  1  3.86  1  6.16  1  2.02  1  2.13  1  4.23  PCG_AA  1  1.35  1  4.22  1  3.27  1  3.44  1  1.89  1  1.99  1  3.14  PCGRNA  1  1.29  1  3.99  1  2.58  1  3.4  1  1.99  1  1.79  1  3.32  PCGDegenRNA  1  0.69  1  2.49  1  2.02  1  2.02  1  0.85  1  0.83  1  1.76  Alicut-PCGRNA  1  1.23  1  4.69  1  2.94  1  4.22  1  1.61  1  1.56  1  3.24  The branch lengths were calculated from the longest terminal taxon of each lineage to the common ancestor to the Psocoptera. NS, nodal support; BL, branch length. View Large Table 2. Nodal supports and branch lengths for major lineages in each tree Data set  Heteroptera  Psylloidea  Peloridioidea  Fulgoroidea  Cicadoidea  Cercopoidea  Membracoidea  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL    Maximum likelihood analyses using IQ-TREE  CG  100  2.79  100  7.07  100  5.53  100  5.75  100  3.79  100  3.67  100  6.1  PCG3RY  100  0.77  100  2.04  100  1.6  100  1.73  100  1.06  100  1.03  100  1.76  PCGDegen  100  0.52  100  1.15  100  0.88  100  1  100  0.62  100  0.61  100  0.99  PCG13RY  100  0.77  100  1.64  100  1.25  100  1.41  100  0.9  100  0.91  100  1.56  Alicut-PCG  100  0.36  100  0.84  100  0.78  100  0.72  100  0.54  100  0.52  100  0.88  PCG_AA  100  0.85  100  2.05  100  1.7  100  1.79  100  1.09  100  1.19  100  1.53  PCGRNA  100  1.84  100  4.59  100  3.5  100  3.86  100  2.63  100  2.55  100  3.99  PCGDegenRNA  100  0.41  100  1.02  100  0.8  100  0.92  100  0.59  100  0.53  100  0.92  Alicut-PCGRNA  100  0.31  100  0.72  100  0.65  100  0.64  100  0.41  100  0.42  100  0.71    Bayesian analyses using PhyloBayes  PCG  1  1.51  1  4.87  1  3.13  1  4.84  1  2.01  1  1.89  1  3.88  PCG3RY  1  0.45  1  1.6  1  0.96  1  1.29  1  0.53  1  0.61  1  1.03  PCGDegen  1  0.68  1  2.38  1  1.44  1  2.27  1  0.81  1  0.85  1  1.69  PCG13RY  1  0.45  1  1.78  1  1.12  1  1.77  1  0.55  1  0.61  1  1.04  Alicut-PCG  1  1.56  1  6.15  1  3.86  1  6.16  1  2.02  1  2.13  1  4.23  PCG_AA  1  1.35  1  4.22  1  3.27  1  3.44  1  1.89  1  1.99  1  3.14  PCGRNA  1  1.29  1  3.99  1  2.58  1  3.4  1  1.99  1  1.79  1  3.32  PCGDegenRNA  1  0.69  1  2.49  1  2.02  1  2.02  1  0.85  1  0.83  1  1.76  Alicut-PCGRNA  1  1.23  1  4.69  1  2.94  1  4.22  1  1.61  1  1.56  1  3.24  Data set  Heteroptera  Psylloidea  Peloridioidea  Fulgoroidea  Cicadoidea  Cercopoidea  Membracoidea  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL    Maximum likelihood analyses using IQ-TREE  CG  100  2.79  100  7.07  100  5.53  100  5.75  100  3.79  100  3.67  100  6.1  PCG3RY  100  0.77  100  2.04  100  1.6  100  1.73  100  1.06  100  1.03  100  1.76  PCGDegen  100  0.52  100  1.15  100  0.88  100  1  100  0.62  100  0.61  100  0.99  PCG13RY  100  0.77  100  1.64  100  1.25  100  1.41  100  0.9  100  0.91  100  1.56  Alicut-PCG  100  0.36  100  0.84  100  0.78  100  0.72  100  0.54  100  0.52  100  0.88  PCG_AA  100  0.85  100  2.05  100  1.7  100  1.79  100  1.09  100  1.19  100  1.53  PCGRNA  100  1.84  100  4.59  100  3.5  100  3.86  100  2.63  100  2.55  100  3.99  PCGDegenRNA  100  0.41  100  1.02  100  0.8  100  0.92  100  0.59  100  0.53  100  0.92  Alicut-PCGRNA  100  0.31  100  0.72  100  0.65  100  0.64  100  0.41  100  0.42  100  0.71    Bayesian analyses using PhyloBayes  PCG  1  1.51  1  4.87  1  3.13  1  4.84  1  2.01  1  1.89  1  3.88  PCG3RY  1  0.45  1  1.6  1  0.96  1  1.29  1  0.53  1  0.61  1  1.03  PCGDegen  1  0.68  1  2.38  1  1.44  1  2.27  1  0.81  1  0.85  1  1.69  PCG13RY  1  0.45  1  1.78  1  1.12  1  1.77  1  0.55  1  0.61  1  1.04  Alicut-PCG  1  1.56  1  6.15  1  3.86  1  6.16  1  2.02  1  2.13  1  4.23  PCG_AA  1  1.35  1  4.22  1  3.27  1  3.44  1  1.89  1  1.99  1  3.14  PCGRNA  1  1.29  1  3.99  1  2.58  1  3.4  1  1.99  1  1.79  1  3.32  PCGDegenRNA  1  0.69  1  2.49  1  2.02  1  2.02  1  0.85  1  0.83  1  1.76  Alicut-PCGRNA  1  1.23  1  4.69  1  2.94  1  4.22  1  1.61  1  1.56  1  3.24  The branch lengths were calculated from the longest terminal taxon of each lineage to the common ancestor to the Psocoptera. NS, nodal support; BL, branch length. View Large To evaluate the impact of character state variation on tree topology, we ran the Goremykin et al. (2010) NoiseReductor script (sorter.pl) on the full data set (i.e. PCGRNA) and performed both ML and Bayesian inferences. In addition, the nucleotide compositional heterogeneity of the data set PCG was tested through pairwise Euclidean distances (Regier & Zwick, 2011; Zwick et al., 2012; Regier et al., 2013). The detailed protocols of both analyses are provided in Supporting Information. RESULTS The complete or nearly complete mitogenomes were recovered for ten species with the same gene organization as the ancestral insect (Cameron, 2014b). The other 12 species had partial mitogenomes and the missing genes were mainly located adjacent to the putative control region. A detailed description of mitogenome assembly and the characteristics of the data matrix are provided in Supporting Information. The monophyly of Hemiptera received strong support from all analyses (bootstrap support value [BP] = 100, Bayesian posterior probability value [PP] = 1.0). All superfamilies represented by more than two species were monophyletic. However, the concatenated alignments with or without RNA genes, different data recoding strategies for protein-coding genes and tree construction methods resulted in the incongruent relationships among superfamilies. ML analyses Most of the ML analyses under site-homogeneous models yielded the same tree topology (Fig. 1), except for those from Degen-coding and alignment masking. Heteroptera was well supported as the sister group to all other hemipterans (BP = 100). The remaining hemipteran taxa were divided into two main clades. The first clade comprised three superfamilies: Peloridioidea, Psylloidea and Fulgoroidea. Most ML analyses recovered Peloridioidea and Psylloidea as a clade (BP > 70), collectively sister to the superfamily Fulgoroidea. The second clade was composed of the three Cicadomorpha superfamilies: Membracoidea, Cicadoidea and Cercopoidea. In all ML analyses, relationships within Cicadomorpha were consistent [Membracoidea + (Cicadoidea + Cercopoidea)], with strong nodal supports for the major nodes (BP ≥ 90). In the ML analyses, only the data set PCGDegen embedded Heteroptera within an ingroup and as sister to Cicadomorpha. For the analyses with alignment masking (Alicut-PCG and Alicut-PCGRNA), the only difference occurred in the first major clade. The topological pattern [Peloridioidea + (Psylloidea + Fulgoroidea)] was retrieved by Alicut-PCG and Alicut-PCGRNA. Overall, Auchenorrhyncha was rendered paraphyletic, due to the Fulgoroidea grouping with the clade (Psylloidea + Peloridioidea) or with Psylloidea alone. Visual inspection of the ML trees revealed that two representatives from outgroup Psylloidea (Sternorrhyncha), five representatives from ingroup Fulgoroidea (all sample in Delphacidae) and two representatives from ingroup Membracoidea (i.e. Darthula hardwickii and Petalocephala ochracea) exhibited the conspicuously long branches. The one-way ANOVA revealed no difference in the branch lengths between major groups (P > 0.05) (Table 2). Figure 1. View largeDownload slide Maximum likelihood tree estimated with IQ-TREE from the data set of PCGRNA, with the partition schemes and best-fit models selected by PartitionFinder. Node numbers show bootstrap support values (> 50). Scale bar represents substitutions/site. Asterisks designate the species newly sequenced in this study. Figure 1. View largeDownload slide Maximum likelihood tree estimated with IQ-TREE from the data set of PCGRNA, with the partition schemes and best-fit models selected by PartitionFinder. Node numbers show bootstrap support values (> 50). Scale bar represents substitutions/site. Asterisks designate the species newly sequenced in this study. Bayesian analyses In most of the PhyloBayes analyses, the site- heterogeneous CAT model had no important effect on deep relationships. The Bayesian trees recovered a paraphyletic Auchenorrhyncha, quite similar to the trees recovered by ML analysis under the site-homogeneous model. The differences observed between ML and Bayesian trees were centred on the following aspects. (1) Within the clade containing Peloridioidea, Psylloidea and Fulgoroidea, PCG, Alicut_PCG, PCGRNA and Alicut_PCGRNA resulted in [Peloridioidea + (Psylloidea + Fulgoroidea)] (as in ML Alicut-PCG and in ML Alicut-PCGRNA), whereas PCGDegen, PCG13RY, PCG_AA and PCGDegenRNA recovered [Fulgoroidea + (Psylloidea + Peloridioidea)] (as in all other ML trees). In the PhyloBayes analysis of PCG3RY, the relationship between Peloridioidea, Psylloidea and Fulgoroidea was unresolved. (2) For Cicadomorpha, the Bayesian analyses of PCG3RY, PCG13RY, PCGDegen and PCGDegenRNA recovered the sister relationship of [Cicadoidea + (Cercopoidea + Membracoidea)]. (3) For the position of Heteroptera, Bayesian analyses revealed three possibilities: sister group to all other Hemiptera in most cases, sister group to Cicadomorpha in PCG3RY tree (but without significant statistical support, PP = 0.63), clustered with the grouping [Peloridioidea + (Psylloidea + Fulgoroidea)] in the trees from Alicut-PCG and Alicut-PCGRNA. The branch-length heterogeneity is more obvious in the Bayesian trees due to longer branch lengths leading to Psylloidea, Peloridioidea and Fulgoroidea. The one-way ANOVA showed significant differences in the branch lengths between major groups (P = 0.0000 < 0.05). Results from the OV-sorted alignments For the ML analyses of OV-sorted alignments, Auchenorrhyncha was paraphyletic until the 5500 most variable sites were deleted (data set 8765 bp): [Fulgoroidea + ((Cicadoidea + Cercopoidea) + Membracoidea)] (Supporting Information, Fig. S2). In the subsequent three sorting analyses (i.e. the data sets 7265, 6765 and 6265 bp), a monophyletic Auchenorrhyncha was still retrieved, but the inter-superfamily branches became too short to be distinguished. After data set 5765 bp, relationships within Hemiptera became unresolved, but Heteroptera remained sister to the rest. In the PhyloBayes analyses of OV-sorted alignments (CAT-GTR model), the monophyly of Auchenorrhyncha was recovered after the 5500 most variable sites were deleted (data set 8765 bp) (Fig. 2). An identical topology was recovered at the next shortening step (data set 8265 bp). In both trees, Sternorrhyncha was sister to the remaining Hemiptera; Heteropterodea was not supported as Heteroptera was sister to a monophyletic Auchenorrhyncha. Within Auchenorrhyncha, superfamily relationships were concordant with the ML analyses of the OV-sorted data set 8765 bp: [Fulgoroidea + ((Cicadoidea + Cercopoidea) + Membracoidea)]. Although Auchenorrhyncha was still supported in the next two shorter data sets (7765 and 7265 bp), an unexpected superfamily relationship [(Cicadoidea + Cercopoidea) + (Fulgoroidea + Membracoidea)] was retrieved (Supporting Information, Fig. S3). These two sister group relationships were weakly supported. In subsequent analyses with further removal of variable positions, relationships within Hemiptera collapsed due to information loss. Figure 2. View largeDownload slide Bayesian tree inferred from the OV-sorted PCGRNA data set (8765 bp) using PhyloBayes with the CAT-GTR model. Numbers on the tree indicate the Bayesian posterior probability values (> 0.90). Scale bar represents substitutions/site. Figure 2. View largeDownload slide Bayesian tree inferred from the OV-sorted PCGRNA data set (8765 bp) using PhyloBayes with the CAT-GTR model. Numbers on the tree indicate the Bayesian posterior probability values (> 0.90). Scale bar represents substitutions/site. Assessment of compositional heterogeneity A Euclidean distance analysis of the nucleotide composition of PCG showed evidence of strong compositional heterogeneity, especially for Coleorrhyncha with long subtending branches (Supporting Information, Fig. S4). This indicated that the three species of Coleorrhyncha shared a similar sequence composition to the remaining Hemiptera. Compositional heterogeneity is likely to have a distorting effect on analyses that included Coleorrhyncha. Unfortunately, removal of Coleorrhyncha did not significantly alter phylogenetic inference; paraphyletic Auchenorrhyncha was still found in the analyses under both homogeneous and heterogeneous models without Coleorrhyncha (Supporting Information, Fig. S5). Comparisons across compositional distance trees indicated that neither coding scheme nor the OV-sorting method effectively removed compositional heterogeneity. A long-branch Coleorrhyncha was consistently found in all compositional distance trees (Supporting Information, Fig. S6). DISCUSSION Limits of mitogenomes in resolving higher-level auchenorrhynchan phylogeny With continued technological development, the availability of insect mitogenomes has increased dramatically. Using the mitogenome as a molecular marker has generally been reserved for resolving intra-ordinal phylogenetic relationships of insects, such as in Coleoptera (Gillett et al., 2014; Timmermans et al., 2016; Nie et al., 2017), Diptera (Cameron et al., 2007) and Orthoptera (Ma et al., 2012). The mitogenome has been shown to be insufficient for recovering deeper relationships (Talavera & Vila, 2011; Song et al., 2016a), and its use often resulted in a conclusion incongruent with other phylogenetic evidence. Talavera & Vila (2011) revealed that fast sequence evolution of some insect groups compromised the utility of the mitogenome in solving higher-level relationships. Attempts to test the monophyly of Auchenorrhyncha using mitogenomic data initially included almost all available paraneopteran mitogenomes. However, several lineages with accelerated sequence evolutionary rates exhibited significant long-branch attraction, where Phthiraptera and Thysanoptera were nested within Hemiptera, with Sternorrhyncha (in particular with aphid and white flies). Therefore, we selected relatively slow-evolving mitogenomes from Psocoptera and Psylloidea (Sternorrhyncha) for this study. However, removing fasting-evolving outgroups did not overcome the long-branch effect. Within Hemiptera, long-branched Sternorrhyncha and Fulgoromorpha were still clustered in an assemblage. In the mitogenomic study by Simon & Hadrys (2013), the sister group relationship between Sternorrhyncha and Fulgoromorpha was identified as systematically erroneous. Thus, the paraphyly of Auchenorrhyncha, attributed to attraction between Sternorrhyncha and Fulgoromorpha, is not an accepted hypothesis. Long branches are often correlated with accelerated rates of substitution (Talavera & Vila, 2011; Bernt et al., 2013; Simon & Hadrys, 2013) and/or composition heterogeneity (Regier & Zwick, 2011; Zwick et al., 2012; Regier et al., 2013). Our substitution rate analysis indicated that accelerated substitution rates were shared by Peloridioidea, Psylloidea and Fulgoroidea (Supporting Information, Table S7). Furthermore, Euclidean distance analyses showed significant compositional heterogeneity in the data (Supporting Information, Figs S4, S6). To avoid saturation and composition heterogeneity of the mitogenomic data, we used comprehensive data recoding strategies and reran the phylogenetic analyses. The long-branched assemblage (i.e. Peloridioidea, Psylloidea and Fulgoroidea) could not be separated. Comparison of the compositional distance trees from the recoded data sets demonstrated that no data treatment removed all compositional heterogeneity (Supporting Information, Fig. S6). This also suggests why most analyses failed to break up long branches: the compositional signal is stronger than the phylogenetic signal. Several recent studies have shown that the use of the Bayesian mixture model, CAT, can effectively avoid or partly overcome long-branch attraction (Lartillot, Brinkmann & Philippe, 2007; Lartillot et al., 2009; Talavera & Vila, 2011; Song et al., 2016b). However, tree searches using the CAT-GTR or CAT model implemented in the software PhyloBayes produced similar topologies to ML analyses under the site-homogeneous model. The Bayesian mixture model could not substantially avoid long-branch attraction artefacts for the current mitogenomic data sets with full taxa, even when combined with recoding schemes. This again demonstrated the difficulty in resolving the ‘Auchenorrhyncha question’ with mitogenomes. Taken together, the complicating factors, including biased base composition, substitution saturation, compositional heterogeneity and lineage-specific rate, limit the phylogenetic utility of the mitogenome in recovering deeper relationships in Auchenorrhyncha. In further research, using genomic data to uncover new nuclear genes with relatively slow-evolving rates may be more effective. Higher-level phylogeny of Auchenorrhyncha Highly variable positions can increase long-branch attraction effects. Using OV-sorting (Goremykin et al., 2010), the proportion of noise in the data set decreased as highly variable positions were successively removed. The effect of removing saturated sites was identified by comparing topologies from a series of data sets with different proportions of conserved and variable sites. In the OV-sorting analyses, alignments with reduced variability supported auchenorrhynchan monophyly (Fig. 2 and Supporting Information, Figs S2, S3). At the same time, there was a decrease in nodal support for [Fulgoroidea + (Psylloidea + Peloridioidea)] as the proportion of highly variable sites reduced. The results of the OV-sorting analyses also indicated that auchenorrhynchan paraphyly is probably an artefact caused by the evolutionary characteristics of mitogenome sequences, for example high substitution saturation and higher overall substitution rates. Therefore, inference based on noise-reduced alignments may be more reliable. At the superfamily level, the relationship [Membracoidea + (Cicadoidea + Cercopoidea)] was well supported by all analyses under ML criteria regardless of data treatments, and in five of nine Bayesian analyses (i.e. PCG, PCGAA, Alicut-PCG, PCGRNA and Alicut-PCGRNA). This arrangement is concordant with previous molecular studies based on nuclear and/or mitochondrial genes (Cryan, 2005; Cryan & Urban, 2012). In addition, analyses based on more conserved data sets with the OV-sorting treatment tended to also support [Membracoidea + (Cicadoidea + Cercopoidea)]. Therefore, we conclude that the mitogenome may be useful for relationships below the infraorder of Auchenorrhyncha. The placement of Heteroptera Although the placement of Heteroptera is beyond the scope of this study, this clade is one of the outgroups closely related to the recovered ingroup Auchenorrhyncha. In most previous phylogenetic studies, Heteroptera was suggested to be derived from within ‘Homoptera’ (Campbell et al., 1995; von Dohlen & Moran, 1995; Sorensen et al., 1995; Bourgoin & Campbell, 2002). Based on the comprehensive fossil, molecular and morphological interpretations, Bourgoin & Campbell (2002) proposed a sister group relationship between Heteropterodea (comprising Heteroptera and Coleorrhyncha) and Cicadomorpha. In this study, the position of Heteroptera was variable: sister to the remaining Hemiptera, sister to Cicadomorpha, clustered with the grouping [Peloridioidea + (Psylloidea + Fulgoroidea)] or sister to a monophyletic Auchenorrhyncha. Although the cause of these conflicting results between methods is complicated, long-branch attraction may be one of the factors. That Heteroptera was retrieved as a sister group to all other Hemitpera may result from clustering caused by attraction to all other long-branch taxa. In the existing mitogenomic data, long-branch attraction occurs not only between the outgroup and the ingroup but also between the taxa of the ingroup. To avoid the possible long-branch attraction between the outgroup and ingroup, we removed all long-branch outgroup taxa (i.e. Coleorrhyncha and Sternorrhyncha) and compiled the reduced data set with only Psocoptera and Heterotera as outgroups. The results revealed the possibility of long-branch attraction between Fulgoroidea and Membracoidea (Supporting Information, Fig. S7). Thus, elucidating the placement of Heteroptera relative to taxa of Auchenorrhyncha was difficult with the available mitogenomic data. CONCLUSION The anomalous characteristics in the Hemiptera mitogenomes, such as biased base composition, substitution saturation, compositional heterogeneity and clade-specific rate, lead to the striking differences in branch length between groups. These introduce the possibility of long-branch attraction, thus limiting the applicability of mitogenomic data in phylogenetic reconstructions of Hemiptera or Auchenorrhyncha. This study presents a series of exploratory analyses required to obtain ‘reasonable’ phylogenetic results from insect mitogenome data sets. Although newly sequenced data do not contribute substantially towards resolving the monophyly of Auchenorrhyncha, this article serves as a cautionary tale for future researchers attempting phylogenomic analyses to obtain plausible results for this insect group. SUPPORTING INFORMATION Additional Supporting Information may be found in the online version of this article at the publisher’s web-site: Table S1. Statistics associated with the sequencing of mitogenomes using NGS-Illumina technology in 22 hemipteran species. Table S2. Primers designed for amplifying ‘Bait’ sequences. Table S3. Local blast for the ‘Bait’ sequences of each species newly determined in this study. Table S4. The mitochondrial genome nucleotide composition for the major lineage included in this study. Table S5. Saturation test for protein-coding genes, RNA genes and the reduced data sets with OV-sorting. Table S6. Chi-square test of homogeneity of base frequencies across taxa performed by (A) PAUP and (B) TREE-PUZZLE. Table S7. Estimation of synonymous and nonsynonymous substitution rates by yn00 implemented in PAML. Table S8. Partition schemes and best-fitting models selected by PartitionFinder for (A) PCG, (B) PCG_AA, and (C) PCGRNA. Figure S1. Mean sequencing coverage vs. concentration of genomic DNA in the sample pool for 22 identified mitogenomic assemblies. Figure S2. Maximum likelihood tree inferred from the OV-sorted PCGRNA data set (8765 bp) using IQ-TREE under the GTR model. Node numbers show bootstrap support values (> 50). Scale bar represents substitutions/site. Figure S3. Bayesian tree inferred from the OV-sorted PCGRNA data set (7765 bp) using PhyloBayes with the CAT-GTR model. Numbers on the tree indicate the Bayesian posterior probability values (> 0.90). Scale bar represents substitutions/site. Figure S4. Euclidean distance tree for the data set of PCG. Bootstrap percentages are displayed for the significantly long branches and indicate the strength of the compositional signal at particular nodes. The branch lengths represent the compositional heterogeneity in the data set: the longer a branch is, the stronger is the compositional signal. Figure S5. Maximum likelihood tree inferred from the PCG data set without three species from Coleorrhyncha using IQ-TREE under the GTR model. The PhyloBayes analysis based on the same data set provided largely identical tree topology. Node numbers show bootstrap support values (> 50, left) and Bayesian posterior probability values (> 0.90, right). Dashes denote the relationships not being retrieved or BP < 50 or PP < 0.9. Scale bar represents substitutions/site. Figure S6. Compositional distance trees for eight data sets – PCG3RY, PCGDegen, Alicut_PCG, PCGRNA, PCGDegenRNA, Alicut_PCGRNA, OV-sorting 8765bp, and OV-sorting 7765 bp. Red lines highlight three taxa from Coleorrhyncha. The branch length sum illustrates the total amount of compositional heterogeneity in the data set. Figure S7. (A) Maximum likelihood tree inferred from the PCG data set without Coleorrhyncha and Sternorrhyncha using IQ-TREE under the GTR model. Node numbers show bootstrap support values (> 50). Scale bar represents substitutions/site. The Cicadomorpha was non-monophyletic with respect to the nested position of Fulgoroidea. (B) The PhyloBayes tree under the CAT-GTR model based on the same data set. Node numbers show Bayesian posterior probability values (> 0.90). Scale bar represents substitutions/site. In this analysis, the CAT-GTR model suppressed the effect of long-branch attraction between Fulgoroidea and Membracoidea and recovered a monophyletic Cicadomorpha. ACKNOWLEDGEMENTS The detailed information for some sections of this article are tabulated in Supporting Information. We thank Doctor Peng Liu for advice in analysing data and writing this article. We are grateful to Dr Andreas Zwick for his kindly help in the analyses of compositional heterogeneity and for his helpful comments and suggestions on the manuscript. We acknowledge Professor Bojian Zhong for offering the Perl script for OV-sorting analyses. This research is supported by grants from the National Natural Science Foundation of China (No. 31402002), Key Scientific Research Projects of Henan Province (Grant Nos 14B210036 and 16A210029) and Henan Academician Workstation of Pest Green Prevention and Control for Plants in Southern Henan (YZ201601). REFERENCES Bergsten J . 2005. A review of long-branch attraction. Cladistics  21: 163– 193. Google Scholar CrossRef Search ADS   Bernt M , Bleidorn C , Braband A , Dambach J , Donath A , Fritzsch G , Golombek A , Hadrys H , Jühling F , Meusemann K , Middendorf M , Misof B , Perseke M , Podsiadlowski L , von Reumont B , Schierwater B , Schlegel M , Schrödl M , Simon S , Stadler PF , Stöger I , Struck TH . 2013. A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Molecular Phylogenetics and Evolution  69: 352– 364. Google Scholar CrossRef Search ADS PubMed  Bininda-Emonds OR . 2005. transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences. BMC Bioinformatics  6: 156. Google Scholar CrossRef Search ADS PubMed  Boore JL . 1999. Animal mitochondrial genomes. Nucleic Acids Research  27: 1767– 1780. Google Scholar CrossRef Search ADS PubMed  Bourgoin T . 1993. Female genitalia in Hemiptera Fulgoromorpha, morphological and phylogenetic data. Annales de la Societe Entomologique de France (NS)  29: 225– 244. Bourgoin T , Campbell BC . 2002. Inferring a phylogeny for Hemiptera, falling into the ‘autapomorphic trap’. Denisia  4: 67– 82. Bourgoin T , Campbell BC , Ouvrard D , Chan K . 2001. 18S Ribosomal RNA patterns in Hemiptera with emphasis on Fulgoromorpha. In: 2nd European Hemiptera Congress, Slovenia, Fiesa, 20–24 June 2001. Program and book of abstracts. p. 18. Bourgoin T , Chan K , Ouvrard D , Campbell BC . 1999. Character analysis using ribosomal RNA secondary structure and its application to Hemiptera and Fulgoromorpha phylogeny. In: 10th International Auchenorrhyncha Congress, Cardiff, Wales, UK. Cameron SL . 2014a. How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research. Systematic Entomology  39: 400– 411. Google Scholar CrossRef Search ADS   Cameron SL . 2014b. Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology  59: 95– 117. Google Scholar CrossRef Search ADS   Cameron SL , Lambkin CL , Barker SC , Whiting MF . 2007. A mitochondrial genome phylogeny of Diptera: whole genome sequence data accurately resolve relationships over broad timescales with high precision. Systematic Entomology  32: 40– 59. Google Scholar CrossRef Search ADS   Campbell BC , Steffen-Campbell JD , Sorensen JT , Gill RJ . 1995. Paraphyly of Homoptera and Auchenorrhyncha inferred from 18S rRNA nucleotide sequences. Systematic Entomology  20: 175– 194. Google Scholar CrossRef Search ADS   Carver M , Gross GF , Woodward TE . 1991. Hemiptera (Bugs, leafhoppers, cicadas, aphids, scale insects, etc.). In: Naumann ID , Carne PB , Lawrence JF , Nielsen ES , Spradbery JP , eds. The insects of Australia. A textbook for students and research workers, 2nd edn, Vol. 1, Chapter 30 . Carlton: Melbourne University Press, 429– 509. Crampton-Platt A , Timmermans MJ , Gimmel ML , Kutty SN , Cockerill TD , Vun Khen C , Vogler AP . 2015. Soup to tree: the phylogeny of beetles inferred by mitochondrial metagenomics of a Bornean rainforest sample. Molecular Biology and Evolution  32: 2302– 2316. Google Scholar CrossRef Search ADS PubMed  Cryan JR . 2005. Molecular phylogeny of Cicadomorpha (Insecta Hemiptera, Cicadoidea, Cercopoidea and Membracoidea), adding evidence to the controversy. Systematic Entomology  30: 563– 574. Google Scholar CrossRef Search ADS   Cryan JR , Urban JM . 2012. Higher-level phylogeny of the insect order Hemiptera, is Auchenorrhyncha really paraphyletic? Systematic Entomology  37: 7– 21. Google Scholar CrossRef Search ADS   D’Urso V . 2002. The wing-coupling apparatus of Hemiptera Auchenorrhyncha: structure, function, and systematic value. Denisia  176: 401– 410. Dietrich CH , Rakitov RA , Holmes JL , Black WC 4th . 2001. Phylogeny of the major lineages of Membracoidea (Insecta: Hemiptera: Cicadomorpha) based on 28S rDNA sequences. Molecular Phylogenetics and Evolution  18: 293– 305. Google Scholar CrossRef Search ADS PubMed  von Dohlen CD , Moran NA . 1995. Molecular phylogeny of the Homoptera: a paraphyletic taxon. Journal of Molecular Evolution  41: 211– 223. Google Scholar CrossRef Search ADS PubMed  Evans JW . 1963. The phylogeny of the Homoptera. Annual Review of Entomology  8: 77– 94. Google Scholar CrossRef Search ADS   Farris JS , Källersjö M , Kluge AG , Bult C . 1994. Testing significance of incongruence. Cladistics  10: 315– 319. Google Scholar CrossRef Search ADS   Fenn JD , Song H , Cameron SL , Whiting MF . 2008. A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data. Molecular Phylogenetics and Evolution  49: 59– 68. Google Scholar CrossRef Search ADS PubMed  Forero D . 2008. The systematics of the Hemiptera. Revista Colombiana de Entomología  34: 1– 21. Gillett CP , Crampton-Platt A , Timmermans MJ , Jordal BH , Emerson BC , Vogler AP . 2014. Bulk de novo mitogenome assembly from pooled total DNA elucidates the phylogeny of weevils (Coleoptera: Curculionoidea). Molecular Biology and Evolution  31: 2223– 2237. Google Scholar CrossRef Search ADS PubMed  Goodchild AJP . 1966. Evolution of the alimentary canal in the Hemiptera. Biological Reviews of the Cambridge Philosophical Society  41: 97– 140. Google Scholar CrossRef Search ADS   Goremykin VV , Nikiforova SV , Bininda-Emonds OR . 2010. Automated removal of noisy data in phylogenomic analyses. Journal of Molecular Evolution  71: 319– 331. Google Scholar CrossRef Search ADS PubMed  Hamilton KGA . 1981. Morphology and evolution of the rhynchotan head (Insecta, Hemiptera Homoptera). Canadian Entomologist  113: 953– 974. Google Scholar CrossRef Search ADS   Hennig W . 1969. Die Stammesgeschichte der Insekten, Vol. 436 . Frankfurt: Waldemar Kramer. Hennig W . 1981. Insect phylogeny . New York: John Wiley & Sons. Katoh K , Standley DM . 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution  30: 772– 780. Google Scholar CrossRef Search ADS PubMed  Kristensen NP . 1975. The phylogeny of the hexapod “orders”. A critical review of recent accounts. Journal of Zoological Systematics and Evolutionary Research  13: 1– 44. Google Scholar CrossRef Search ADS   Kück P , Meusemann K . 2010. FASconCAT: convenient handling of data matrices. Molecular Phylogenetics and Evolution  56: 1115– 1118. Google Scholar CrossRef Search ADS PubMed  Lanfear R , Calcott B , Ho SY , Guindon S . 2012. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution  29: 1695– 1701. Google Scholar CrossRef Search ADS PubMed  Lartillot N , Brinkmann H , Philippe H . 2007. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evolutionary Biology  7 ( Suppl 1): S4. Google Scholar CrossRef Search ADS PubMed  Lartillot N , Lepage T , Blanquart S . 2009. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics  25: 2286– 2288. Google Scholar CrossRef Search ADS PubMed  Lartillot N , Philippe H . 2004. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Molecular Biology and Evolution  21: 1095– 1109. Google Scholar CrossRef Search ADS PubMed  Li H , Shao R , Song N , Song F , Jiang P , Li Z , Cai W . 2015. Higher-level phylogeny of paraneopteran insects inferred from mitochondrial genome sequences. Scientific Reports  5: 8527. Google Scholar CrossRef Search ADS PubMed  Ma C , Liu C , Yang P , Kang L . 2009. The complete mitochondrial genomes of two band-winged grasshoppers, Gastrimargus marmoratus and Oedaleus asiaticus . BMC Genomics  10: 156. Google Scholar CrossRef Search ADS PubMed  Ma C , Yang P , Jiang F , Chapuis MP , Shali Y , Sword GA , Kang L . 2012. Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. Molecular Ecology  21: 4344– 4358. Google Scholar CrossRef Search ADS PubMed  Miller M , Pfeiffer W , Schwartz T . 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE)  14: 1– 8. Müller HJ . 1962. Neuere Vorstellungen über Verbreitung und Phylogenie der Endosymbiosen der Zikaden 51: 190– 210. Nguyen LT , Schmidt HA , von Haeseler A , Minh BQ . 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution  32: 268– 274. Google Scholar CrossRef Search ADS PubMed  Nie RE , Breeschoten T , Timmermans MJ , Nadein K , Xue HJ , Bai M , Huang Y , Yang XK , Vogler AP . 2017. The phylogeny of Galerucinae (Coleoptera: Chrysomelidae) and the performance of mitochondrial genomes in phylogenetic inference compared to nuclear rRNA genes. Cladistics  33: 1– 18. Google Scholar CrossRef Search ADS   O’Brien LB , Wilson SW . 1985. Planthopper systematics and external morphology. In: Nault LR , Rodriguez JG , eds. The leafhoppers and planthoppers . Wiley New York, 61– 102. Ouvrard D , Campbell BC , Bourgoin T , Chan KL . 2000. 18S rRNA secondary structure and phylogenetic position of Peloridiidae (Insecta, hemiptera). Molecular Phylogenetics and Evolution  16: 403– 417. Google Scholar CrossRef Search ADS PubMed  Pagès M , Chaval Y , Herbreteau V , Waengsothorn S , Cosson JF , Hugot JP , Morand S , Michaux J . 2010. Revisiting the taxonomy of the Rattini tribe: a phylogeny-based delimitation of species boundaries. BMC Evolutionary Biology  10: 184. Google Scholar CrossRef Search ADS PubMed  Phillips MJ , Delsuc F , Penny D . 2004. Genome-scale phylogeny and the detection of systematic biases. Molecular Biology and Evolution  21: 1455– 1458. Google Scholar CrossRef Search ADS PubMed  Popov YA , Shcherbakov DE . 1996. Origin and evolution of the Coleorrhyncha as shown by the fossil record. In Schaefer , Carl W eds. Studies on hemipteran phylogeny . Lanham, Maryland: Entomological Society of America, pp. 9– 30. Rambaut A . 2009. FigTree, Version 1.4.3. Available at: http://tree.bio.ed.ac.uk/software/figtree Regier JC , Mitter C , Zwick A , Bazinet AL , Cummings MP , Kawahara AY , Sohn JC , Zwickl DJ , Cho S , Davis DR , Baixeras J , Brown J , Parr C , Weller S , Lees DC , Mitter KT . 2013. A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS ONE  8: e58568. Google Scholar CrossRef Search ADS PubMed  Regier JC , Shultz JW , Zwick A , Hussey A , Ball B , Wetzer R , Martin JW , Cunningham CW . 2010. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature  463: 1079– 1083. Google Scholar CrossRef Search ADS PubMed  Regier JC , Zwick A . 2011. Sources of signal in 62 protein-coding nuclear genes for higher-level phylogenetics of arthropods. PLoS ONE  6: e23408. Google Scholar CrossRef Search ADS PubMed  Rubinoff D , Holland BS . 2005. Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Systematic Biology  54: 952– 961. Google Scholar CrossRef Search ADS PubMed  Schmidt HA , Strimmer K , Vingron M , von Haeseler A . 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics  18: 502– 504. Google Scholar CrossRef Search ADS PubMed  Shcherbakov DY . 1984. Systematics and phylogeny of Permian Cicadomorpha (Cimicada and Cicadina). Paleontological Journal  18: 87– 97. Shcherbakov DY . 1988. Origin and evolution of Auchenorrhyncha based on fossil evidence: 8. In: Proceedings of the XVIII International Congress of Entomology, Abstracts, Vancouver, BC, Canada. Shcherbakov DY . 1996. Origin and evolution of the Auchenorrhyncha as shown by the fossil. In Schaefer, Carl W eds. Studies on hemipteran phylogeny . Lanham, Maryland: Entomological Society of America, 31– 45. Sheffield NC , Song H , Cameron SL , Whiting MF . 2009. Nonstationary evolution and compositional heterogeneity in beetle mitochondrial phylogenomics. Systematic Biology  58: 381– 394. Google Scholar CrossRef Search ADS PubMed  Simon C , Buckley TR , Frati F , Stewart JB , Beckenbach AT . 2006. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved Polymerase Chain Reaction primers for animal mitochondrial DNA. Annual Review of Ecology and Systematics  37: 547– 579. Simon S , Hadrys H . 2013. A comparative analysis of complete mitochondrial genomes among Hexapoda. Molecular Phylogenetics and Evolution  69: 393– 403. Google Scholar CrossRef Search ADS PubMed  Song N , An SH , Yin XM , Zhao T , Wang XY . 2016a. Insufficient resolving power of mitogenome data in deciphering deep phylogeny of Holometabola. Journal of Systematics and Evolution  54: 545– 559. Google Scholar CrossRef Search ADS   Song F , Li H , Jiang P , Zhou X , Liu J , Sun C , Vogler AP , Cai W . 2016b. Capturing the phylogeny of Holometabola with mitochondrial genome data and Bayesian site-heterogeneous mixture models. Genome Biology and Evolution  8: 1411– 1426. Google Scholar CrossRef Search ADS   Song N , Liang AP , Bu CP . 2012. A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences. PLoS ONE  7: e48778. Google Scholar CrossRef Search ADS PubMed  Sorensen JT , Campbell BC , Gill RJ , Steffen-Campbell JD . 1995. Non-monophyly of Auchenorrhyncha (“Homoptera”), based upon 18S rDNA phylogeny, eco-evolutionary and cladistic implications within pre-Heteropterodea Hemiptera (s.l.) and a proposal for new monophyletic suborders. Pan-Pacific Entomologist  71: 31– 60. Swofford DL . 2002. PAUP, phylogenetic analysis using parsimony and other methods, Version 4 beta 10 . Sunderland: Sinauer Associates. Talavera G , Vila R . 2011. What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny. BMC Evolutionary Biology  11: 315. Google Scholar CrossRef Search ADS PubMed  Tamura K , Stecher G , Peterson D , Filipski A , Kumar S . 2013. MEGA6: Molecular Evolutionary Genetics Analysis, version 6.0. Molecular Biology and Evolution  30: 2725– 2729. Google Scholar CrossRef Search ADS PubMed  Tang M , Tan M , Meng G , Yang S , Su X , Liu S , Song W , Li Y , Wu Q , Zhang A , Zhou X . 2014. Multiplex sequencing of pooled mitochondrial genomes-a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Research  42: e166. Google Scholar CrossRef Search ADS PubMed  Timmermans MJ , Barton C , Haran J , Ahrens D , Culverwell CL , Ollikainen A , Dodsworth S , Foster PG , Bocak L , Vogler AP . 2016. Family-level sampling of mitochondrial genomes in Coleoptera: compositional heterogeneity and phylogenetics. Genome Biology and Evolution  8: 161– 175. Google Scholar CrossRef Search ADS   Timmermans MJ , Dodsworth S , Culverwell CL , Bocak L , Ahrens D , Littlewood DT , Pons J , Vogler AP . 2010. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Research  38: e197. Google Scholar CrossRef Search ADS PubMed  Trifinopoulos J , Nguyen LT , von Haeseler A , Minh BQ . 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research  44: W232– W235. Google Scholar CrossRef Search ADS PubMed  Urban JM , Cryan JR . 2007. Evolution of the planthoppers (Insecta: Hemiptera: Fulgoroidea). Molecular Phylogenetics and Evolution  42: 556– 572. Google Scholar CrossRef Search ADS PubMed  Xia X . 2013. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution  30: 1720– 1728. Google Scholar CrossRef Search ADS PubMed  Xia X , Xie Z , Salemi M , Chen L , Wang Y . 2003. An index of substitution saturation and its application. Molecular Phylogenetics and Evolution  26: 1– 7. Google Scholar CrossRef Search ADS PubMed  Yang Z . 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution  24: 1586– 1591. Google Scholar CrossRef Search ADS PubMed  Yang Z , Nielsen R . 2000. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Molecular Biology and Evolution  17: 32– 43. Google Scholar CrossRef Search ADS PubMed  Yoshizawa K , Saigusa T . 2001. Phylogenetic analysis of paraneopteran orders (Insecta: Neoptera) based on forewing base structure, with comments on monophyly of Auchenorrhyncha (Hemiptera). Systematic Entomology  26: 1– 13. Google Scholar CrossRef Search ADS   Zrzavý J . 1992. Evolution of antennae and historical ecology of the hemipteran insects (Paraneoptera). Acta Entomologica Bohemoslovaca  89: 77– 86. Zwick A , Regier JC , Zwickl DJ . 2012. Resolving discrepancy between nucleotides and amino acids in deep-level arthropod phylogenomics: differentiating serine codons in 21-amino-acid models. PLoS ONE  7: e47450. Google Scholar CrossRef Search ADS PubMed  © 2017 The Linnean Society of London, Zoological Journal of the Linnean Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Zoological Journal of the Linnean Society Oxford University Press

Insufficient power of mitogenomic data in resolving the auchenorrhynchan monophyly

Loading next page...
 
/lp/ou_press/insufficient-power-of-mitogenomic-data-in-resolving-the-KdvtBTs8Px
Publisher
The Linnean Society of London
Copyright
© 2017 The Linnean Society of London, Zoological Journal of the Linnean Society
ISSN
0024-4082
eISSN
1096-3642
D.O.I.
10.1093/zoolinnean/zlx096
Publisher site
See Article on Publisher Site

Abstract

Abstract The hemipteran suborder Auchenorrhyncha consists of four superfamily rank taxa (i.e. Cicadoidea, Membracoidea, Cercopoidea and Fulgoroidea), with more than 42000 described species worldwide. The monophyly of Auchenorrhyncha and the higher-level relationships within this group remain questionable, despite recent research using morphological and molecular data. In this study, we sequenced 18 mitogenomes of representatives of Membracoidea, three of Cercopoidea and one of Psylloidea and conducted phylogenetic analyses together with 35 existing mitogenomes of Hemiptera, with special emphasis on the auchenorrhynchan monophyly. The phylogenetic inferences from the mitogenomic data are strongly affected by increased rates of sequence substitution associated with several lineages, which leads to the significant long-branch attraction. Under these conditions, the monophyly of Auchenorrhyncha is not supported even with the comprehensive data coding schemes. This shows the limitations of the mitogenome in resolving the higher-level phylogeny of Auchenorrhyncha. In addition, the removal of fast-evolving sites using a pattern sorting method (OV-sorting) significantly improves phylogenetic estimates under both homogeneous and heterogeneous models. Moreover, data sets with a higher proportion of conserved sites recover the monophyly of Auchenorrhyncha and support a superfamily relationship of [Fulgoroidea + ((Cicadoidea + Cercopoidea) + Membracoidea)]. Auchenorrhyncha, mitochondrial genome, phylogeny INTRODUCTION Auchenorrhyncha is a group within the insect order Hemiptera. Traditionally, this group has been recognized as a suborder with two main clades: Cicadomorpha and Fulgoromorpha (Hennig, 1969, 1981; Carver, Gross & Woodward, 1991). Cicadomorpha comprises three superfamilies: Cicadoidea (cicadas), Membracoidea (leafhoppers and treehoppers) and Cercopoidea (spittlebugs and froghoppers), with 35000 described species belonging to 12 extant families (Dietrich et al., 2001; Cryan, 2005). Fulgoromorpha includes only the superfamily Fulgoroidea (planthoppers) and contains more than 9000 described species across c. 20 extant families (O’Brien & Wilson, 1985; Urban & Cryan, 2007). All species of Auchenorrhyncha are phytophagous insects, many of which are considered agricultural pests. For example, some delphacid planthoppers in Fulgoroidea can reduce crop productivity through feeding damage and by transmitting plant viral diseases (Cryan & Urban, 2012; Song, Liang & Bu, 2012). Despite their economic impact, there is little phylogenetic research focused on Auchenorrhyncha and the group’s phylogeny is debated. Specifically, studies of auchenorrhynchan monophyly vary across different analytical approaches and character sets (Kristensen, 1975; Hennig, 1981; Zrzavý, 1992; Bourgoin, 1993; Campbell et al., 1995; von Dohlen & Moran, 1995; Cryan, 2005; Cryan & Urban, 2012; Song et al., 2012). Understanding the phylogenetic structure of Auchenorrhyncha will help develop a stable, natural classification scheme and serve as a framework for studying the ecological and evolutionary patterns of this insect group. Therefore, we reinvestigated the phylogeny of Auchenorrhyncha, using a new data type and taxon sampling. Detailed reviews of the morphological and molecular evidence for and against the monophyly of Auchenorrhyncha were recently summarized by Cryan & Urban (2012). Proposed characters supporting auchenorrhynchan monophyly include structures of the head, wings and abdomen (Yoshizawa & Saigusa, 2001; Cryan & Urban, 2012). Characters supporting auchenorrhynchan paraphyly include features of the alimentary canal, head capsule and female reproductive system (Forero, 2008; Cryan & Urban, 2012). Therefore, monophyly of Auchenorrhyncha is difficult to resolve with morphological characters alone. According to Bourgoin & Campbell (2002), a consensus of paraphyly was reached by studying 18S rDNA data (Campbell et al., 1995; von Dohlen & Moran, 1995; Sorensen et al., 1995; Bourgoin et al., 1999, 2001; Ouvrard et al., 2000) and fossil records (Shcherbakov, 1984, 1988, 1996; Popov & Shcherbakov, 1996). The paraphyly of Auchenorrhyncha is mainly due to a close affinity between Cicadomorpha or Fulgoromorpha and Heteropterodea (i.e. the clade Heteroptera + Coleorrhyncha). Yet, two recent studies provide new molecular evidence supporting auchenorrhynchan monophyly (Urban & Cryan, 2007; Cryan & Urban, 2012). Specifically, Cryan & Urban (2012) attempted to address the issue of auchenorrhynchan monophyly using multilocus molecular data from nuclear and mitochondrial gene fragments, although their preferred tree topology had only moderate statistical support for this group. The issue of auchenorrhynchan monophyly also pertains to the phylogenetic placement of this suborder within Hemiptera (Hennig, 1981; Zrzavý, 1992; Cryan & Urban, 2012). Evans (1963) treated Auchenorrhyncha as the sister group of a clade composed of two hemipteran suborders: Coleorrhyncha plus Sternorrhyncha. Hennig (1981) placed Auchenorrhyncha as the putative sister group of Sternorrhyncha, which was largely consistent with the hypothesis of a ‘Homoptera long regarded as a separate order’. However, a cladistic analysis of morphological characters by Zrzavý (1992) recovered Auchenorrhyncha as the sister group to Heteropterodea, while Sternorrhyncha was found to be sister to the remaining hemipteran lineages. Thus, Zrzavý (1992) refuted the monophyly of Homoptera. The majority of morphological evidence (e.g. Goodchild, 1966; Hamilton, 1981), palaeontological information and the early 18S rDNA only data sets recover Cicadomorpha and Fulgoromorpha as two independent, non-sister lineages of Hemiptera, rendering a paraphyletic Auchenorrhyncha. However, other morphology-based studies (e.g. D’Urso, 2002) and recent multilocus molecular phylogenetic analyses recover the monophyly of Auchenorrhyncha. Thus, the phylogeny of Auchenorrhyncha remains a problem for hemipterists. There have been no phylogenetic studies that examined the auchenorrhynchan monophyly with only mitogenomic data. Mitogenome sequences have been used for inferring phylogenetic relationships within Insecta at all taxonomic levels (see reviews of Simon et al., 2006; Simon & Hadrys, 2013; Cameron, 2014a, b). mtDNA has several characteristic properties, including maternal inheritance, relatively rapid rates of evolution and high genomic copy numbers (Boore, 1999), making mtDNA easy to amplify. Therefore, it has been an important marker for molecular phylogenetic analysis in insects (Timmermans et al., 2010; Cameron, 2014a, b). Mitogenome sequencing allows for much larger-scale sampling, as genome-scale data sequencing is still costly. Furthermore, the high-throughput sequencing technologies used have revolutionized approaches for obtaining complete insect mitogenomes (Timmermans et al., 2010; Gillett et al., 2014; Tang et al., 2014; Crampton-Platt et al., 2015; Timmermans et al., 2016; Nie et al., 2017). These studies significantly increase the scope of insect phylogenetic studies based on mitogenomic data. Compared to Sanger-based approaches, high-throughput sequencing can overcome the difficulty of designing species-specific primers, long-PCR amplifications and the high cost of obtaining de novo full mitogenomes (Cameron, 2014a; Gillett et al., 2014). Despite the wide use of the mitogenome in phylogenetics, it is contentious because it is a rapidly evolving organelle genome. Phylogenetic studies are limited when using only a small fraction of the total genome (Rubinoff & Holland, 2005). Indeed, phylogenetic inference within several paraneopteran taxa (i.e. Thysanoptera, Phthiraptera and Hemiptera) appears to be influenced by the accelerated substitution rates of mitogenomes (Talavera & Vila, 2011; Simon & Hadrys, 2013). Lineage-specific substitution rates have the potential to cause long-branch artefacts (LBA) (Sheffield et al., 2009; Simon & Hadrys, 2013; Li et al., 2015). Removal of problematic long-branching taxa has been applied to avoid LBA problems (Bergsten, 2005), but often the phylogenetic position of the omitted taxa is of special interest. Therefore, better data matrix treatments and increased taxon sampling are needed to improve insect mitogenomic phylogenies. Common data treatment methods include removing third codon positions (Fenn et al., 2008; Ma et al., 2009), RY coding for the first and/or third codon positions (Phillips, Delsuc & Penny, 2004; Pagès et al., 2010) and degen-coding (Regier et al., 2010; Zwick, Regier & Zwickl, 2012). The OV-sorting method recently developed by Goremykin, Nikiforova & Bininda-Emonds (2010) can sort and remove highly variable sites to generate a series of increasingly conserved alignments. This method is useful for evaluating and reducing the impact of systematic error in large-scale phylogenomic analyses (Goremykin et al., 2010). By November 2016, complete or nearly complete mitogenomes for 33 species of Auchenorrhyncha were available in GenBank. However, the most diverse superfamily Membracoidea with c. 25000 described species (Cryan, 2005) was represented by only nine. To achieve a more balanced taxon sampling and a better-resolved phylogeny of Auchenorrhyncha, we sequenced additional mitogenomes from the superfamilies Membracoidea (18 species) and Cercopoidea (three species) in Auchenorrhyncha, plus additional outgroup taxa from the family Psylloidea (Sternorrhyncha). The newly generated data were combined with the publicly available hemipteran mitogenomes to test the monophyly of Auchenorrhyncha. Maximum likelihood (ML) and Bayesian methods were used to analyse nucleotide and amino acid sequences under various coding schemes. METHODS Taxon sampling A total of 49 ingroup taxa represented all auchenorrhynchan superfamilies: 24 Membracoidea, ten Cercopoidea, five Cicadoidea and ten Fulgoromorpha (Table 1). The outgroup included three species of Psocoptera, three Heteroptera, two Sternorrhyncha and three Coleorrhyncha. The primary specimen materials used for DNA extraction were from the Entomological Museum of Henan Agricultural University (voucher numbers in Table 1). Table 1. Taxonomic information and GenBank accession numbers for the taxa included in this study Superfamily  Species  Accession number  Voucher numbers for newly sequenced species  Collecting information  Membracoidea  Darthula hardwickii  NC_026699  –  –  Membracoidea  Leptobelus gazella  NC 023219  –  –  Membracoidea  Centrotus cornutus  KX437728  MT-2015 isolate Zz041601  Vietnam, Pingxiang, 22°11′N, 106°70′E, July 2012  Membracoidea  Empoasca vitis  NC 024838  –  –  Membracoidea  Drabescoides nuchalis  NC_028154  –  –  Membracoidea  Homalodisca vitripennis  NC_006899  –  –  Membracoidea  Nephotettix cincticeps  NC_026977  –  –  Membracoidea  Balclutha sp.  KX437738  MT-2015 isolate Zz052711  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Hishimonus sp.  KX437735  MT-2015 isolate Zz052706  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Cicadula sp.  KX437724  MT-2015 isolate Zz052713  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Cuerna sp.  KX437741  MT-2015 isolate Zz052311  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Dryadomorpha sp.  KX437736  MT-2015 isolate Zz060407  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Empoasca sp.  KX437737  MT-2015 isolate Zz031203  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Exitianus indicus  KX437722  MT-2015 isolate Zz052320  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Graphocephala sp.  KX437740  MT-2015 isolate Zz052315  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Hishimonus phycitis  KX437727  MT-2015 isolate Zz052707  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Nephotettix sp.  KX437725  MT-2015 isolate Zz053036  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Osbornellus sp.  KX437739  MT-2015 isolate Zz052506  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Petalocephala ochracea  KX437734  MT-2015 isolate 15052715  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Phlogotettix sp.  KX437721  MT-2015 isolate Zz052705  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Psammotettix sp.  KX437742  MT-2015 isolate Zz060503  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Sophonia linealis  KX437723  MT-2015 isolate Zz052717  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Atkinsoniclla sp.  KX437743  MT-2015 isolate Zz060410  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Athysanopsis sp.  KX437726  MT-2015 isolate Zz052318  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Philaenus spumarius  AY630340  –  –  Cercopoidea  Callitettix versicolor  EU725832  –  –  Cercopoidea  Callitettix braconoides  NC_025497  –  –  Cercopoidea  Callitettix biformis  NC_025496  –  –  Cercopoidea  Abidama producta  NC 015799  –  –  Cercopoidea  Aeneolamia contigua  NC_025495  –  –  Cercopoidea  Cosmoscarta bispecularis  NC_026289  –  –  Cercopoidea  Paphnutius ruficeps  KX437731  MT-2015 isolate Zz052908  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Aphrophora intermedia  KX437729  MT-2015 isolate Zz062722  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Clovia sp.  KX437730  MT-2015 isolate Zz052918  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cicadoidea  Magicicada tredecim  KM000130  –  –  Cicadoidea  Gaeana maculata  KM244671  –  –  Cicadoidea  Tettigades auropilosa  KM000129  –  –  Cicadoidea  Tettigades ulnaria  KM000128  –  –  Cicadoidea  Diceroprocta semicincta  KM000131  –  –  Fulgoroidea  Laodelphax striatellus  FJ360695  –  –  Fulgoroidea  Laodelphax striatella  JX880068  –  –  Fulgoroidea  Nilaparvata lugens  JN563995  –  –  Fulgoroidea  Sogatella furcifera  NC_021417  –  –  Fulgoroidea  Nilaparvata muiri  NC_024627  –  –  Fulgoroidea  Lycorma delicatula  EU909203  –  –  Fulgoroidea  Pyrops candelaria  FJ006724  –  –  Fulgoroidea  Ricania marginalis  JN242415  –  –  Fulgoroidea  Geisha distinctissima  FJ230961  –  –  Fulgoroidea  Sivaloka damnosus  FJ360694  –  –  Peloridioidea  Xenophyes cascus  JF323862  –  –  Peloridioidea  Hemiodoecus leai  NC_025329  –  –  Peloridioidea  Hackeriella veitchi  NC_020309  –  –  Psylloidea  Pachypsylla venusta  AY263317  –  –  Psylloidea  Cacopsylla chinensis  KX437732  MT-2015 isolate Zz060501  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cimicoidea  Riptortus pedestris  EU427344  –  –  Cimicoidea  Hydaropsis longirostris  EU427337  –  –  Lygaeoidea  Geocoris pallidipennis  EU427336  –  –  Atropetae  Lepidopsocidae sp.  AF335994  –  –  Psocetae  Longivalvus hyalospilus  JQ910986  –  –  Psocetae  Psococerastis albimaculata  NC_021400  –  –  Superfamily  Species  Accession number  Voucher numbers for newly sequenced species  Collecting information  Membracoidea  Darthula hardwickii  NC_026699  –  –  Membracoidea  Leptobelus gazella  NC 023219  –  –  Membracoidea  Centrotus cornutus  KX437728  MT-2015 isolate Zz041601  Vietnam, Pingxiang, 22°11′N, 106°70′E, July 2012  Membracoidea  Empoasca vitis  NC 024838  –  –  Membracoidea  Drabescoides nuchalis  NC_028154  –  –  Membracoidea  Homalodisca vitripennis  NC_006899  –  –  Membracoidea  Nephotettix cincticeps  NC_026977  –  –  Membracoidea  Balclutha sp.  KX437738  MT-2015 isolate Zz052711  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Hishimonus sp.  KX437735  MT-2015 isolate Zz052706  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Cicadula sp.  KX437724  MT-2015 isolate Zz052713  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Cuerna sp.  KX437741  MT-2015 isolate Zz052311  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Dryadomorpha sp.  KX437736  MT-2015 isolate Zz060407  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Empoasca sp.  KX437737  MT-2015 isolate Zz031203  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Exitianus indicus  KX437722  MT-2015 isolate Zz052320  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Graphocephala sp.  KX437740  MT-2015 isolate Zz052315  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Hishimonus phycitis  KX437727  MT-2015 isolate Zz052707  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Nephotettix sp.  KX437725  MT-2015 isolate Zz053036  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Osbornellus sp.  KX437739  MT-2015 isolate Zz052506  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Petalocephala ochracea  KX437734  MT-2015 isolate 15052715  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Phlogotettix sp.  KX437721  MT-2015 isolate Zz052705  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Psammotettix sp.  KX437742  MT-2015 isolate Zz060503  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Sophonia linealis  KX437723  MT-2015 isolate Zz052717  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Atkinsoniclla sp.  KX437743  MT-2015 isolate Zz060410  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Athysanopsis sp.  KX437726  MT-2015 isolate Zz052318  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Philaenus spumarius  AY630340  –  –  Cercopoidea  Callitettix versicolor  EU725832  –  –  Cercopoidea  Callitettix braconoides  NC_025497  –  –  Cercopoidea  Callitettix biformis  NC_025496  –  –  Cercopoidea  Abidama producta  NC 015799  –  –  Cercopoidea  Aeneolamia contigua  NC_025495  –  –  Cercopoidea  Cosmoscarta bispecularis  NC_026289  –  –  Cercopoidea  Paphnutius ruficeps  KX437731  MT-2015 isolate Zz052908  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Aphrophora intermedia  KX437729  MT-2015 isolate Zz062722  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Clovia sp.  KX437730  MT-2015 isolate Zz052918  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cicadoidea  Magicicada tredecim  KM000130  –  –  Cicadoidea  Gaeana maculata  KM244671  –  –  Cicadoidea  Tettigades auropilosa  KM000129  –  –  Cicadoidea  Tettigades ulnaria  KM000128  –  –  Cicadoidea  Diceroprocta semicincta  KM000131  –  –  Fulgoroidea  Laodelphax striatellus  FJ360695  –  –  Fulgoroidea  Laodelphax striatella  JX880068  –  –  Fulgoroidea  Nilaparvata lugens  JN563995  –  –  Fulgoroidea  Sogatella furcifera  NC_021417  –  –  Fulgoroidea  Nilaparvata muiri  NC_024627  –  –  Fulgoroidea  Lycorma delicatula  EU909203  –  –  Fulgoroidea  Pyrops candelaria  FJ006724  –  –  Fulgoroidea  Ricania marginalis  JN242415  –  –  Fulgoroidea  Geisha distinctissima  FJ230961  –  –  Fulgoroidea  Sivaloka damnosus  FJ360694  –  –  Peloridioidea  Xenophyes cascus  JF323862  –  –  Peloridioidea  Hemiodoecus leai  NC_025329  –  –  Peloridioidea  Hackeriella veitchi  NC_020309  –  –  Psylloidea  Pachypsylla venusta  AY263317  –  –  Psylloidea  Cacopsylla chinensis  KX437732  MT-2015 isolate Zz060501  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cimicoidea  Riptortus pedestris  EU427344  –  –  Cimicoidea  Hydaropsis longirostris  EU427337  –  –  Lygaeoidea  Geocoris pallidipennis  EU427336  –  –  Atropetae  Lepidopsocidae sp.  AF335994  –  –  Psocetae  Longivalvus hyalospilus  JQ910986  –  –  Psocetae  Psococerastis albimaculata  NC_021400  –  –  Mitogenomes newly sequenced in this study are indicated in bold. View Large Table 1. Taxonomic information and GenBank accession numbers for the taxa included in this study Superfamily  Species  Accession number  Voucher numbers for newly sequenced species  Collecting information  Membracoidea  Darthula hardwickii  NC_026699  –  –  Membracoidea  Leptobelus gazella  NC 023219  –  –  Membracoidea  Centrotus cornutus  KX437728  MT-2015 isolate Zz041601  Vietnam, Pingxiang, 22°11′N, 106°70′E, July 2012  Membracoidea  Empoasca vitis  NC 024838  –  –  Membracoidea  Drabescoides nuchalis  NC_028154  –  –  Membracoidea  Homalodisca vitripennis  NC_006899  –  –  Membracoidea  Nephotettix cincticeps  NC_026977  –  –  Membracoidea  Balclutha sp.  KX437738  MT-2015 isolate Zz052711  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Hishimonus sp.  KX437735  MT-2015 isolate Zz052706  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Cicadula sp.  KX437724  MT-2015 isolate Zz052713  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Cuerna sp.  KX437741  MT-2015 isolate Zz052311  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Dryadomorpha sp.  KX437736  MT-2015 isolate Zz060407  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Empoasca sp.  KX437737  MT-2015 isolate Zz031203  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Exitianus indicus  KX437722  MT-2015 isolate Zz052320  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Graphocephala sp.  KX437740  MT-2015 isolate Zz052315  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Hishimonus phycitis  KX437727  MT-2015 isolate Zz052707  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Nephotettix sp.  KX437725  MT-2015 isolate Zz053036  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Osbornellus sp.  KX437739  MT-2015 isolate Zz052506  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Petalocephala ochracea  KX437734  MT-2015 isolate 15052715  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Phlogotettix sp.  KX437721  MT-2015 isolate Zz052705  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Psammotettix sp.  KX437742  MT-2015 isolate Zz060503  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Sophonia linealis  KX437723  MT-2015 isolate Zz052717  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Atkinsoniclla sp.  KX437743  MT-2015 isolate Zz060410  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Athysanopsis sp.  KX437726  MT-2015 isolate Zz052318  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Philaenus spumarius  AY630340  –  –  Cercopoidea  Callitettix versicolor  EU725832  –  –  Cercopoidea  Callitettix braconoides  NC_025497  –  –  Cercopoidea  Callitettix biformis  NC_025496  –  –  Cercopoidea  Abidama producta  NC 015799  –  –  Cercopoidea  Aeneolamia contigua  NC_025495  –  –  Cercopoidea  Cosmoscarta bispecularis  NC_026289  –  –  Cercopoidea  Paphnutius ruficeps  KX437731  MT-2015 isolate Zz052908  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Aphrophora intermedia  KX437729  MT-2015 isolate Zz062722  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Clovia sp.  KX437730  MT-2015 isolate Zz052918  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cicadoidea  Magicicada tredecim  KM000130  –  –  Cicadoidea  Gaeana maculata  KM244671  –  –  Cicadoidea  Tettigades auropilosa  KM000129  –  –  Cicadoidea  Tettigades ulnaria  KM000128  –  –  Cicadoidea  Diceroprocta semicincta  KM000131  –  –  Fulgoroidea  Laodelphax striatellus  FJ360695  –  –  Fulgoroidea  Laodelphax striatella  JX880068  –  –  Fulgoroidea  Nilaparvata lugens  JN563995  –  –  Fulgoroidea  Sogatella furcifera  NC_021417  –  –  Fulgoroidea  Nilaparvata muiri  NC_024627  –  –  Fulgoroidea  Lycorma delicatula  EU909203  –  –  Fulgoroidea  Pyrops candelaria  FJ006724  –  –  Fulgoroidea  Ricania marginalis  JN242415  –  –  Fulgoroidea  Geisha distinctissima  FJ230961  –  –  Fulgoroidea  Sivaloka damnosus  FJ360694  –  –  Peloridioidea  Xenophyes cascus  JF323862  –  –  Peloridioidea  Hemiodoecus leai  NC_025329  –  –  Peloridioidea  Hackeriella veitchi  NC_020309  –  –  Psylloidea  Pachypsylla venusta  AY263317  –  –  Psylloidea  Cacopsylla chinensis  KX437732  MT-2015 isolate Zz060501  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cimicoidea  Riptortus pedestris  EU427344  –  –  Cimicoidea  Hydaropsis longirostris  EU427337  –  –  Lygaeoidea  Geocoris pallidipennis  EU427336  –  –  Atropetae  Lepidopsocidae sp.  AF335994  –  –  Psocetae  Longivalvus hyalospilus  JQ910986  –  –  Psocetae  Psococerastis albimaculata  NC_021400  –  –  Superfamily  Species  Accession number  Voucher numbers for newly sequenced species  Collecting information  Membracoidea  Darthula hardwickii  NC_026699  –  –  Membracoidea  Leptobelus gazella  NC 023219  –  –  Membracoidea  Centrotus cornutus  KX437728  MT-2015 isolate Zz041601  Vietnam, Pingxiang, 22°11′N, 106°70′E, July 2012  Membracoidea  Empoasca vitis  NC 024838  –  –  Membracoidea  Drabescoides nuchalis  NC_028154  –  –  Membracoidea  Homalodisca vitripennis  NC_006899  –  –  Membracoidea  Nephotettix cincticeps  NC_026977  –  –  Membracoidea  Balclutha sp.  KX437738  MT-2015 isolate Zz052711  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Hishimonus sp.  KX437735  MT-2015 isolate Zz052706  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Cicadula sp.  KX437724  MT-2015 isolate Zz052713  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Cuerna sp.  KX437741  MT-2015 isolate Zz052311  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Dryadomorpha sp.  KX437736  MT-2015 isolate Zz060407  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Empoasca sp.  KX437737  MT-2015 isolate Zz031203  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Exitianus indicus  KX437722  MT-2015 isolate Zz052320  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Graphocephala sp.  KX437740  MT-2015 isolate Zz052315  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Hishimonus phycitis  KX437727  MT-2015 isolate Zz052707  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Nephotettix sp.  KX437725  MT-2015 isolate Zz053036  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Osbornellus sp.  KX437739  MT-2015 isolate Zz052506  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Petalocephala ochracea  KX437734  MT-2015 isolate 15052715  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Phlogotettix sp.  KX437721  MT-2015 isolate Zz052705  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Psammotettix sp.  KX437742  MT-2015 isolate Zz060503  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Sophonia linealis  KX437723  MT-2015 isolate Zz052717  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Atkinsoniclla sp.  KX437743  MT-2015 isolate Zz060410  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Membracoidea  Athysanopsis sp.  KX437726  MT-2015 isolate Zz052318  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Philaenus spumarius  AY630340  –  –  Cercopoidea  Callitettix versicolor  EU725832  –  –  Cercopoidea  Callitettix braconoides  NC_025497  –  –  Cercopoidea  Callitettix biformis  NC_025496  –  –  Cercopoidea  Abidama producta  NC 015799  –  –  Cercopoidea  Aeneolamia contigua  NC_025495  –  –  Cercopoidea  Cosmoscarta bispecularis  NC_026289  –  –  Cercopoidea  Paphnutius ruficeps  KX437731  MT-2015 isolate Zz052908  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Aphrophora intermedia  KX437729  MT-2015 isolate Zz062722  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cercopoidea  Clovia sp.  KX437730  MT-2015 isolate Zz052918  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cicadoidea  Magicicada tredecim  KM000130  –  –  Cicadoidea  Gaeana maculata  KM244671  –  –  Cicadoidea  Tettigades auropilosa  KM000129  –  –  Cicadoidea  Tettigades ulnaria  KM000128  –  –  Cicadoidea  Diceroprocta semicincta  KM000131  –  –  Fulgoroidea  Laodelphax striatellus  FJ360695  –  –  Fulgoroidea  Laodelphax striatella  JX880068  –  –  Fulgoroidea  Nilaparvata lugens  JN563995  –  –  Fulgoroidea  Sogatella furcifera  NC_021417  –  –  Fulgoroidea  Nilaparvata muiri  NC_024627  –  –  Fulgoroidea  Lycorma delicatula  EU909203  –  –  Fulgoroidea  Pyrops candelaria  FJ006724  –  –  Fulgoroidea  Ricania marginalis  JN242415  –  –  Fulgoroidea  Geisha distinctissima  FJ230961  –  –  Fulgoroidea  Sivaloka damnosus  FJ360694  –  –  Peloridioidea  Xenophyes cascus  JF323862  –  –  Peloridioidea  Hemiodoecus leai  NC_025329  –  –  Peloridioidea  Hackeriella veitchi  NC_020309  –  –  Psylloidea  Pachypsylla venusta  AY263317  –  –  Psylloidea  Cacopsylla chinensis  KX437732  MT-2015 isolate Zz060501  China, Xinyang, Mt. Jigong, 31°50′N, 114°05′E, July 2015  Cimicoidea  Riptortus pedestris  EU427344  –  –  Cimicoidea  Hydaropsis longirostris  EU427337  –  –  Lygaeoidea  Geocoris pallidipennis  EU427336  –  –  Atropetae  Lepidopsocidae sp.  AF335994  –  –  Psocetae  Longivalvus hyalospilus  JQ910986  –  –  Psocetae  Psococerastis albimaculata  NC_021400  –  –  Mitogenomes newly sequenced in this study are indicated in bold. View Large Dna extraction Genomic DNA was individually extracted from each specimen preserved in 95–100% ethanol using the TIANamp Micro DNA Kit (Tiangen Biotech Co., Ltd) following the manufacturer’s instructions. Mitogenome assembly from next-generation sequencing data The process for assembling mitogenomes from next-generation sequencing data followed the protocol by Gillett et al. (2014). This approach was designed for mitogenome reconstruction from pooled DNA samples, with the following steps: sample and library preparation, genome sequencing with Illumina HiSeq Sequencer (Supporting Information, Table S1 and Fig. S1), searching for target mitogenome (Supporting Information, Tables S2, S3) and mitogenome annotation. The detailed protocols are provided in Supporting Information. Sequence alignment and data set concatenation Each of the 37 mitochondrial genes was aligned separately for further analysis. For protein-coding genes, stop codons were removed and aligned based on codons using the invertebrate mitochondrial genetic code in the Perl script transAlign (Bininda-Emonds, 2005). Both the mitochondrial tRNA and rRNA genes were aligned using MAFFT (version 7) under the iterative refinement method, incorporating the most accurate local (E-INS-i) pairwise alignment information (Katoh & Standley, 2013). Alignments were checked in MEGA 6 (Tamura et al., 2013). Gaps were striped with Gap Strip/Squeeze v2.1.0, with a 40% gap tolerance (http://www.hiv.lanl.gov/content/sequence/GAPSTREEZE/gap.html). All alignments were concatenated into two matrices using FASconCAT_v1.0 (Kück & Meusemann, 2010), one including RNA genes and one excluding. In addition, to alleviate the effect of substitution saturation of codon positions on phylogenetic estimation, protein-coding genes were recoded or masked to construct the following data sets: (1) PCG_AA, (2) PCG3RY, (3) PCG13RY, (4) PCGDegen, (5) Alicut_PCG and (6) Alicut_PCGRNA. The detailed interpretation of each data recoding scheme are given in Supporting Information. Sequence characteristic analyses Nucleotide composition was calculated using MEGA 6 (Supporting Information, Table S4). Sequence saturation was assessed using the index of substitution saturation (Iss) of Xia et al. (2003) as implemented in DAMBE 5 (Xia et al., 2003; Xia, 2013) (Supporting Information, Table S5). Nucleotide homogeneity across taxa was assessed for alignments of PCG, PCG3RY, PCGDegen and PCG13RY using a chi-square test (Farris et al., 1994) implemented in PAUP*4.0b10 (Swofford, 2002) (Supporting Information, Table S6-A). To explore the source of the heterogeneity of base frequencies, a chi-square test was performed based on the nucleotide data sets (PCG, PCG3RY, PCGDegen and PCG13RY) and the amino acid data set (PCG_AA) using TREE-PUZZLE ver. 5.2 (Schmidt et al., 2002) under the GTR model for nucleotides and the mtREVE model for amino acids (Supporting Information, Table S6-B). Estimates of nonsynonymous (dN) and synonymous (dS) substitution rates of concatenated protein-coding genes were obtained using the method by Yang & Nielsen (2000) and the program yn00 as implemented in PAML 4.9 (Yang, 2007) (Supporting Information, Table S7). Phylogenetic analyses Phylogenetic analyses were performed under ML and Bayesian inferences. Partitioned ML searches were carried out using IQ-TREE web server (http://iqtree.cibiv.univie.ac.at/) (Nguyen et al., 2015; Trifinopoulos et al., 2016). PartitionFinder (Lanfear et al., 2012) was used to infer optimal partitioning strategy and best-fit models (Supporting Information, Table S8). The Bayesian analyses were conducted using PhyloBayes (Lartillot & Philippe, 2004; Lartillot, Lepage & Blanquart, 2009) as implemented in the CIPRES Portal (Miller, Pfeiffer & Schwartz, 2010). The detailed parameter settings of ML and the Bayesian analyses are provided in Supporting Information. For each tree reconstruction, we used FigTree v1.4.3 (Rambaut, 2009) to visualize the topology and to calculate the corresponding branch lengths. One-way analyses of variance (ANOVAs) for branch lengths of major groups were performed in Excel 2016 (Table 2). Table 2. Nodal supports and branch lengths for major lineages in each tree Data set  Heteroptera  Psylloidea  Peloridioidea  Fulgoroidea  Cicadoidea  Cercopoidea  Membracoidea  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL    Maximum likelihood analyses using IQ-TREE  CG  100  2.79  100  7.07  100  5.53  100  5.75  100  3.79  100  3.67  100  6.1  PCG3RY  100  0.77  100  2.04  100  1.6  100  1.73  100  1.06  100  1.03  100  1.76  PCGDegen  100  0.52  100  1.15  100  0.88  100  1  100  0.62  100  0.61  100  0.99  PCG13RY  100  0.77  100  1.64  100  1.25  100  1.41  100  0.9  100  0.91  100  1.56  Alicut-PCG  100  0.36  100  0.84  100  0.78  100  0.72  100  0.54  100  0.52  100  0.88  PCG_AA  100  0.85  100  2.05  100  1.7  100  1.79  100  1.09  100  1.19  100  1.53  PCGRNA  100  1.84  100  4.59  100  3.5  100  3.86  100  2.63  100  2.55  100  3.99  PCGDegenRNA  100  0.41  100  1.02  100  0.8  100  0.92  100  0.59  100  0.53  100  0.92  Alicut-PCGRNA  100  0.31  100  0.72  100  0.65  100  0.64  100  0.41  100  0.42  100  0.71    Bayesian analyses using PhyloBayes  PCG  1  1.51  1  4.87  1  3.13  1  4.84  1  2.01  1  1.89  1  3.88  PCG3RY  1  0.45  1  1.6  1  0.96  1  1.29  1  0.53  1  0.61  1  1.03  PCGDegen  1  0.68  1  2.38  1  1.44  1  2.27  1  0.81  1  0.85  1  1.69  PCG13RY  1  0.45  1  1.78  1  1.12  1  1.77  1  0.55  1  0.61  1  1.04  Alicut-PCG  1  1.56  1  6.15  1  3.86  1  6.16  1  2.02  1  2.13  1  4.23  PCG_AA  1  1.35  1  4.22  1  3.27  1  3.44  1  1.89  1  1.99  1  3.14  PCGRNA  1  1.29  1  3.99  1  2.58  1  3.4  1  1.99  1  1.79  1  3.32  PCGDegenRNA  1  0.69  1  2.49  1  2.02  1  2.02  1  0.85  1  0.83  1  1.76  Alicut-PCGRNA  1  1.23  1  4.69  1  2.94  1  4.22  1  1.61  1  1.56  1  3.24  Data set  Heteroptera  Psylloidea  Peloridioidea  Fulgoroidea  Cicadoidea  Cercopoidea  Membracoidea  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL    Maximum likelihood analyses using IQ-TREE  CG  100  2.79  100  7.07  100  5.53  100  5.75  100  3.79  100  3.67  100  6.1  PCG3RY  100  0.77  100  2.04  100  1.6  100  1.73  100  1.06  100  1.03  100  1.76  PCGDegen  100  0.52  100  1.15  100  0.88  100  1  100  0.62  100  0.61  100  0.99  PCG13RY  100  0.77  100  1.64  100  1.25  100  1.41  100  0.9  100  0.91  100  1.56  Alicut-PCG  100  0.36  100  0.84  100  0.78  100  0.72  100  0.54  100  0.52  100  0.88  PCG_AA  100  0.85  100  2.05  100  1.7  100  1.79  100  1.09  100  1.19  100  1.53  PCGRNA  100  1.84  100  4.59  100  3.5  100  3.86  100  2.63  100  2.55  100  3.99  PCGDegenRNA  100  0.41  100  1.02  100  0.8  100  0.92  100  0.59  100  0.53  100  0.92  Alicut-PCGRNA  100  0.31  100  0.72  100  0.65  100  0.64  100  0.41  100  0.42  100  0.71    Bayesian analyses using PhyloBayes  PCG  1  1.51  1  4.87  1  3.13  1  4.84  1  2.01  1  1.89  1  3.88  PCG3RY  1  0.45  1  1.6  1  0.96  1  1.29  1  0.53  1  0.61  1  1.03  PCGDegen  1  0.68  1  2.38  1  1.44  1  2.27  1  0.81  1  0.85  1  1.69  PCG13RY  1  0.45  1  1.78  1  1.12  1  1.77  1  0.55  1  0.61  1  1.04  Alicut-PCG  1  1.56  1  6.15  1  3.86  1  6.16  1  2.02  1  2.13  1  4.23  PCG_AA  1  1.35  1  4.22  1  3.27  1  3.44  1  1.89  1  1.99  1  3.14  PCGRNA  1  1.29  1  3.99  1  2.58  1  3.4  1  1.99  1  1.79  1  3.32  PCGDegenRNA  1  0.69  1  2.49  1  2.02  1  2.02  1  0.85  1  0.83  1  1.76  Alicut-PCGRNA  1  1.23  1  4.69  1  2.94  1  4.22  1  1.61  1  1.56  1  3.24  The branch lengths were calculated from the longest terminal taxon of each lineage to the common ancestor to the Psocoptera. NS, nodal support; BL, branch length. View Large Table 2. Nodal supports and branch lengths for major lineages in each tree Data set  Heteroptera  Psylloidea  Peloridioidea  Fulgoroidea  Cicadoidea  Cercopoidea  Membracoidea  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL    Maximum likelihood analyses using IQ-TREE  CG  100  2.79  100  7.07  100  5.53  100  5.75  100  3.79  100  3.67  100  6.1  PCG3RY  100  0.77  100  2.04  100  1.6  100  1.73  100  1.06  100  1.03  100  1.76  PCGDegen  100  0.52  100  1.15  100  0.88  100  1  100  0.62  100  0.61  100  0.99  PCG13RY  100  0.77  100  1.64  100  1.25  100  1.41  100  0.9  100  0.91  100  1.56  Alicut-PCG  100  0.36  100  0.84  100  0.78  100  0.72  100  0.54  100  0.52  100  0.88  PCG_AA  100  0.85  100  2.05  100  1.7  100  1.79  100  1.09  100  1.19  100  1.53  PCGRNA  100  1.84  100  4.59  100  3.5  100  3.86  100  2.63  100  2.55  100  3.99  PCGDegenRNA  100  0.41  100  1.02  100  0.8  100  0.92  100  0.59  100  0.53  100  0.92  Alicut-PCGRNA  100  0.31  100  0.72  100  0.65  100  0.64  100  0.41  100  0.42  100  0.71    Bayesian analyses using PhyloBayes  PCG  1  1.51  1  4.87  1  3.13  1  4.84  1  2.01  1  1.89  1  3.88  PCG3RY  1  0.45  1  1.6  1  0.96  1  1.29  1  0.53  1  0.61  1  1.03  PCGDegen  1  0.68  1  2.38  1  1.44  1  2.27  1  0.81  1  0.85  1  1.69  PCG13RY  1  0.45  1  1.78  1  1.12  1  1.77  1  0.55  1  0.61  1  1.04  Alicut-PCG  1  1.56  1  6.15  1  3.86  1  6.16  1  2.02  1  2.13  1  4.23  PCG_AA  1  1.35  1  4.22  1  3.27  1  3.44  1  1.89  1  1.99  1  3.14  PCGRNA  1  1.29  1  3.99  1  2.58  1  3.4  1  1.99  1  1.79  1  3.32  PCGDegenRNA  1  0.69  1  2.49  1  2.02  1  2.02  1  0.85  1  0.83  1  1.76  Alicut-PCGRNA  1  1.23  1  4.69  1  2.94  1  4.22  1  1.61  1  1.56  1  3.24  Data set  Heteroptera  Psylloidea  Peloridioidea  Fulgoroidea  Cicadoidea  Cercopoidea  Membracoidea  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL  NS  BL    Maximum likelihood analyses using IQ-TREE  CG  100  2.79  100  7.07  100  5.53  100  5.75  100  3.79  100  3.67  100  6.1  PCG3RY  100  0.77  100  2.04  100  1.6  100  1.73  100  1.06  100  1.03  100  1.76  PCGDegen  100  0.52  100  1.15  100  0.88  100  1  100  0.62  100  0.61  100  0.99  PCG13RY  100  0.77  100  1.64  100  1.25  100  1.41  100  0.9  100  0.91  100  1.56  Alicut-PCG  100  0.36  100  0.84  100  0.78  100  0.72  100  0.54  100  0.52  100  0.88  PCG_AA  100  0.85  100  2.05  100  1.7  100  1.79  100  1.09  100  1.19  100  1.53  PCGRNA  100  1.84  100  4.59  100  3.5  100  3.86  100  2.63  100  2.55  100  3.99  PCGDegenRNA  100  0.41  100  1.02  100  0.8  100  0.92  100  0.59  100  0.53  100  0.92  Alicut-PCGRNA  100  0.31  100  0.72  100  0.65  100  0.64  100  0.41  100  0.42  100  0.71    Bayesian analyses using PhyloBayes  PCG  1  1.51  1  4.87  1  3.13  1  4.84  1  2.01  1  1.89  1  3.88  PCG3RY  1  0.45  1  1.6  1  0.96  1  1.29  1  0.53  1  0.61  1  1.03  PCGDegen  1  0.68  1  2.38  1  1.44  1  2.27  1  0.81  1  0.85  1  1.69  PCG13RY  1  0.45  1  1.78  1  1.12  1  1.77  1  0.55  1  0.61  1  1.04  Alicut-PCG  1  1.56  1  6.15  1  3.86  1  6.16  1  2.02  1  2.13  1  4.23  PCG_AA  1  1.35  1  4.22  1  3.27  1  3.44  1  1.89  1  1.99  1  3.14  PCGRNA  1  1.29  1  3.99  1  2.58  1  3.4  1  1.99  1  1.79  1  3.32  PCGDegenRNA  1  0.69  1  2.49  1  2.02  1  2.02  1  0.85  1  0.83  1  1.76  Alicut-PCGRNA  1  1.23  1  4.69  1  2.94  1  4.22  1  1.61  1  1.56  1  3.24  The branch lengths were calculated from the longest terminal taxon of each lineage to the common ancestor to the Psocoptera. NS, nodal support; BL, branch length. View Large To evaluate the impact of character state variation on tree topology, we ran the Goremykin et al. (2010) NoiseReductor script (sorter.pl) on the full data set (i.e. PCGRNA) and performed both ML and Bayesian inferences. In addition, the nucleotide compositional heterogeneity of the data set PCG was tested through pairwise Euclidean distances (Regier & Zwick, 2011; Zwick et al., 2012; Regier et al., 2013). The detailed protocols of both analyses are provided in Supporting Information. RESULTS The complete or nearly complete mitogenomes were recovered for ten species with the same gene organization as the ancestral insect (Cameron, 2014b). The other 12 species had partial mitogenomes and the missing genes were mainly located adjacent to the putative control region. A detailed description of mitogenome assembly and the characteristics of the data matrix are provided in Supporting Information. The monophyly of Hemiptera received strong support from all analyses (bootstrap support value [BP] = 100, Bayesian posterior probability value [PP] = 1.0). All superfamilies represented by more than two species were monophyletic. However, the concatenated alignments with or without RNA genes, different data recoding strategies for protein-coding genes and tree construction methods resulted in the incongruent relationships among superfamilies. ML analyses Most of the ML analyses under site-homogeneous models yielded the same tree topology (Fig. 1), except for those from Degen-coding and alignment masking. Heteroptera was well supported as the sister group to all other hemipterans (BP = 100). The remaining hemipteran taxa were divided into two main clades. The first clade comprised three superfamilies: Peloridioidea, Psylloidea and Fulgoroidea. Most ML analyses recovered Peloridioidea and Psylloidea as a clade (BP > 70), collectively sister to the superfamily Fulgoroidea. The second clade was composed of the three Cicadomorpha superfamilies: Membracoidea, Cicadoidea and Cercopoidea. In all ML analyses, relationships within Cicadomorpha were consistent [Membracoidea + (Cicadoidea + Cercopoidea)], with strong nodal supports for the major nodes (BP ≥ 90). In the ML analyses, only the data set PCGDegen embedded Heteroptera within an ingroup and as sister to Cicadomorpha. For the analyses with alignment masking (Alicut-PCG and Alicut-PCGRNA), the only difference occurred in the first major clade. The topological pattern [Peloridioidea + (Psylloidea + Fulgoroidea)] was retrieved by Alicut-PCG and Alicut-PCGRNA. Overall, Auchenorrhyncha was rendered paraphyletic, due to the Fulgoroidea grouping with the clade (Psylloidea + Peloridioidea) or with Psylloidea alone. Visual inspection of the ML trees revealed that two representatives from outgroup Psylloidea (Sternorrhyncha), five representatives from ingroup Fulgoroidea (all sample in Delphacidae) and two representatives from ingroup Membracoidea (i.e. Darthula hardwickii and Petalocephala ochracea) exhibited the conspicuously long branches. The one-way ANOVA revealed no difference in the branch lengths between major groups (P > 0.05) (Table 2). Figure 1. View largeDownload slide Maximum likelihood tree estimated with IQ-TREE from the data set of PCGRNA, with the partition schemes and best-fit models selected by PartitionFinder. Node numbers show bootstrap support values (> 50). Scale bar represents substitutions/site. Asterisks designate the species newly sequenced in this study. Figure 1. View largeDownload slide Maximum likelihood tree estimated with IQ-TREE from the data set of PCGRNA, with the partition schemes and best-fit models selected by PartitionFinder. Node numbers show bootstrap support values (> 50). Scale bar represents substitutions/site. Asterisks designate the species newly sequenced in this study. Bayesian analyses In most of the PhyloBayes analyses, the site- heterogeneous CAT model had no important effect on deep relationships. The Bayesian trees recovered a paraphyletic Auchenorrhyncha, quite similar to the trees recovered by ML analysis under the site-homogeneous model. The differences observed between ML and Bayesian trees were centred on the following aspects. (1) Within the clade containing Peloridioidea, Psylloidea and Fulgoroidea, PCG, Alicut_PCG, PCGRNA and Alicut_PCGRNA resulted in [Peloridioidea + (Psylloidea + Fulgoroidea)] (as in ML Alicut-PCG and in ML Alicut-PCGRNA), whereas PCGDegen, PCG13RY, PCG_AA and PCGDegenRNA recovered [Fulgoroidea + (Psylloidea + Peloridioidea)] (as in all other ML trees). In the PhyloBayes analysis of PCG3RY, the relationship between Peloridioidea, Psylloidea and Fulgoroidea was unresolved. (2) For Cicadomorpha, the Bayesian analyses of PCG3RY, PCG13RY, PCGDegen and PCGDegenRNA recovered the sister relationship of [Cicadoidea + (Cercopoidea + Membracoidea)]. (3) For the position of Heteroptera, Bayesian analyses revealed three possibilities: sister group to all other Hemiptera in most cases, sister group to Cicadomorpha in PCG3RY tree (but without significant statistical support, PP = 0.63), clustered with the grouping [Peloridioidea + (Psylloidea + Fulgoroidea)] in the trees from Alicut-PCG and Alicut-PCGRNA. The branch-length heterogeneity is more obvious in the Bayesian trees due to longer branch lengths leading to Psylloidea, Peloridioidea and Fulgoroidea. The one-way ANOVA showed significant differences in the branch lengths between major groups (P = 0.0000 < 0.05). Results from the OV-sorted alignments For the ML analyses of OV-sorted alignments, Auchenorrhyncha was paraphyletic until the 5500 most variable sites were deleted (data set 8765 bp): [Fulgoroidea + ((Cicadoidea + Cercopoidea) + Membracoidea)] (Supporting Information, Fig. S2). In the subsequent three sorting analyses (i.e. the data sets 7265, 6765 and 6265 bp), a monophyletic Auchenorrhyncha was still retrieved, but the inter-superfamily branches became too short to be distinguished. After data set 5765 bp, relationships within Hemiptera became unresolved, but Heteroptera remained sister to the rest. In the PhyloBayes analyses of OV-sorted alignments (CAT-GTR model), the monophyly of Auchenorrhyncha was recovered after the 5500 most variable sites were deleted (data set 8765 bp) (Fig. 2). An identical topology was recovered at the next shortening step (data set 8265 bp). In both trees, Sternorrhyncha was sister to the remaining Hemiptera; Heteropterodea was not supported as Heteroptera was sister to a monophyletic Auchenorrhyncha. Within Auchenorrhyncha, superfamily relationships were concordant with the ML analyses of the OV-sorted data set 8765 bp: [Fulgoroidea + ((Cicadoidea + Cercopoidea) + Membracoidea)]. Although Auchenorrhyncha was still supported in the next two shorter data sets (7765 and 7265 bp), an unexpected superfamily relationship [(Cicadoidea + Cercopoidea) + (Fulgoroidea + Membracoidea)] was retrieved (Supporting Information, Fig. S3). These two sister group relationships were weakly supported. In subsequent analyses with further removal of variable positions, relationships within Hemiptera collapsed due to information loss. Figure 2. View largeDownload slide Bayesian tree inferred from the OV-sorted PCGRNA data set (8765 bp) using PhyloBayes with the CAT-GTR model. Numbers on the tree indicate the Bayesian posterior probability values (> 0.90). Scale bar represents substitutions/site. Figure 2. View largeDownload slide Bayesian tree inferred from the OV-sorted PCGRNA data set (8765 bp) using PhyloBayes with the CAT-GTR model. Numbers on the tree indicate the Bayesian posterior probability values (> 0.90). Scale bar represents substitutions/site. Assessment of compositional heterogeneity A Euclidean distance analysis of the nucleotide composition of PCG showed evidence of strong compositional heterogeneity, especially for Coleorrhyncha with long subtending branches (Supporting Information, Fig. S4). This indicated that the three species of Coleorrhyncha shared a similar sequence composition to the remaining Hemiptera. Compositional heterogeneity is likely to have a distorting effect on analyses that included Coleorrhyncha. Unfortunately, removal of Coleorrhyncha did not significantly alter phylogenetic inference; paraphyletic Auchenorrhyncha was still found in the analyses under both homogeneous and heterogeneous models without Coleorrhyncha (Supporting Information, Fig. S5). Comparisons across compositional distance trees indicated that neither coding scheme nor the OV-sorting method effectively removed compositional heterogeneity. A long-branch Coleorrhyncha was consistently found in all compositional distance trees (Supporting Information, Fig. S6). DISCUSSION Limits of mitogenomes in resolving higher-level auchenorrhynchan phylogeny With continued technological development, the availability of insect mitogenomes has increased dramatically. Using the mitogenome as a molecular marker has generally been reserved for resolving intra-ordinal phylogenetic relationships of insects, such as in Coleoptera (Gillett et al., 2014; Timmermans et al., 2016; Nie et al., 2017), Diptera (Cameron et al., 2007) and Orthoptera (Ma et al., 2012). The mitogenome has been shown to be insufficient for recovering deeper relationships (Talavera & Vila, 2011; Song et al., 2016a), and its use often resulted in a conclusion incongruent with other phylogenetic evidence. Talavera & Vila (2011) revealed that fast sequence evolution of some insect groups compromised the utility of the mitogenome in solving higher-level relationships. Attempts to test the monophyly of Auchenorrhyncha using mitogenomic data initially included almost all available paraneopteran mitogenomes. However, several lineages with accelerated sequence evolutionary rates exhibited significant long-branch attraction, where Phthiraptera and Thysanoptera were nested within Hemiptera, with Sternorrhyncha (in particular with aphid and white flies). Therefore, we selected relatively slow-evolving mitogenomes from Psocoptera and Psylloidea (Sternorrhyncha) for this study. However, removing fasting-evolving outgroups did not overcome the long-branch effect. Within Hemiptera, long-branched Sternorrhyncha and Fulgoromorpha were still clustered in an assemblage. In the mitogenomic study by Simon & Hadrys (2013), the sister group relationship between Sternorrhyncha and Fulgoromorpha was identified as systematically erroneous. Thus, the paraphyly of Auchenorrhyncha, attributed to attraction between Sternorrhyncha and Fulgoromorpha, is not an accepted hypothesis. Long branches are often correlated with accelerated rates of substitution (Talavera & Vila, 2011; Bernt et al., 2013; Simon & Hadrys, 2013) and/or composition heterogeneity (Regier & Zwick, 2011; Zwick et al., 2012; Regier et al., 2013). Our substitution rate analysis indicated that accelerated substitution rates were shared by Peloridioidea, Psylloidea and Fulgoroidea (Supporting Information, Table S7). Furthermore, Euclidean distance analyses showed significant compositional heterogeneity in the data (Supporting Information, Figs S4, S6). To avoid saturation and composition heterogeneity of the mitogenomic data, we used comprehensive data recoding strategies and reran the phylogenetic analyses. The long-branched assemblage (i.e. Peloridioidea, Psylloidea and Fulgoroidea) could not be separated. Comparison of the compositional distance trees from the recoded data sets demonstrated that no data treatment removed all compositional heterogeneity (Supporting Information, Fig. S6). This also suggests why most analyses failed to break up long branches: the compositional signal is stronger than the phylogenetic signal. Several recent studies have shown that the use of the Bayesian mixture model, CAT, can effectively avoid or partly overcome long-branch attraction (Lartillot, Brinkmann & Philippe, 2007; Lartillot et al., 2009; Talavera & Vila, 2011; Song et al., 2016b). However, tree searches using the CAT-GTR or CAT model implemented in the software PhyloBayes produced similar topologies to ML analyses under the site-homogeneous model. The Bayesian mixture model could not substantially avoid long-branch attraction artefacts for the current mitogenomic data sets with full taxa, even when combined with recoding schemes. This again demonstrated the difficulty in resolving the ‘Auchenorrhyncha question’ with mitogenomes. Taken together, the complicating factors, including biased base composition, substitution saturation, compositional heterogeneity and lineage-specific rate, limit the phylogenetic utility of the mitogenome in recovering deeper relationships in Auchenorrhyncha. In further research, using genomic data to uncover new nuclear genes with relatively slow-evolving rates may be more effective. Higher-level phylogeny of Auchenorrhyncha Highly variable positions can increase long-branch attraction effects. Using OV-sorting (Goremykin et al., 2010), the proportion of noise in the data set decreased as highly variable positions were successively removed. The effect of removing saturated sites was identified by comparing topologies from a series of data sets with different proportions of conserved and variable sites. In the OV-sorting analyses, alignments with reduced variability supported auchenorrhynchan monophyly (Fig. 2 and Supporting Information, Figs S2, S3). At the same time, there was a decrease in nodal support for [Fulgoroidea + (Psylloidea + Peloridioidea)] as the proportion of highly variable sites reduced. The results of the OV-sorting analyses also indicated that auchenorrhynchan paraphyly is probably an artefact caused by the evolutionary characteristics of mitogenome sequences, for example high substitution saturation and higher overall substitution rates. Therefore, inference based on noise-reduced alignments may be more reliable. At the superfamily level, the relationship [Membracoidea + (Cicadoidea + Cercopoidea)] was well supported by all analyses under ML criteria regardless of data treatments, and in five of nine Bayesian analyses (i.e. PCG, PCGAA, Alicut-PCG, PCGRNA and Alicut-PCGRNA). This arrangement is concordant with previous molecular studies based on nuclear and/or mitochondrial genes (Cryan, 2005; Cryan & Urban, 2012). In addition, analyses based on more conserved data sets with the OV-sorting treatment tended to also support [Membracoidea + (Cicadoidea + Cercopoidea)]. Therefore, we conclude that the mitogenome may be useful for relationships below the infraorder of Auchenorrhyncha. The placement of Heteroptera Although the placement of Heteroptera is beyond the scope of this study, this clade is one of the outgroups closely related to the recovered ingroup Auchenorrhyncha. In most previous phylogenetic studies, Heteroptera was suggested to be derived from within ‘Homoptera’ (Campbell et al., 1995; von Dohlen & Moran, 1995; Sorensen et al., 1995; Bourgoin & Campbell, 2002). Based on the comprehensive fossil, molecular and morphological interpretations, Bourgoin & Campbell (2002) proposed a sister group relationship between Heteropterodea (comprising Heteroptera and Coleorrhyncha) and Cicadomorpha. In this study, the position of Heteroptera was variable: sister to the remaining Hemiptera, sister to Cicadomorpha, clustered with the grouping [Peloridioidea + (Psylloidea + Fulgoroidea)] or sister to a monophyletic Auchenorrhyncha. Although the cause of these conflicting results between methods is complicated, long-branch attraction may be one of the factors. That Heteroptera was retrieved as a sister group to all other Hemitpera may result from clustering caused by attraction to all other long-branch taxa. In the existing mitogenomic data, long-branch attraction occurs not only between the outgroup and the ingroup but also between the taxa of the ingroup. To avoid the possible long-branch attraction between the outgroup and ingroup, we removed all long-branch outgroup taxa (i.e. Coleorrhyncha and Sternorrhyncha) and compiled the reduced data set with only Psocoptera and Heterotera as outgroups. The results revealed the possibility of long-branch attraction between Fulgoroidea and Membracoidea (Supporting Information, Fig. S7). Thus, elucidating the placement of Heteroptera relative to taxa of Auchenorrhyncha was difficult with the available mitogenomic data. CONCLUSION The anomalous characteristics in the Hemiptera mitogenomes, such as biased base composition, substitution saturation, compositional heterogeneity and clade-specific rate, lead to the striking differences in branch length between groups. These introduce the possibility of long-branch attraction, thus limiting the applicability of mitogenomic data in phylogenetic reconstructions of Hemiptera or Auchenorrhyncha. This study presents a series of exploratory analyses required to obtain ‘reasonable’ phylogenetic results from insect mitogenome data sets. Although newly sequenced data do not contribute substantially towards resolving the monophyly of Auchenorrhyncha, this article serves as a cautionary tale for future researchers attempting phylogenomic analyses to obtain plausible results for this insect group. SUPPORTING INFORMATION Additional Supporting Information may be found in the online version of this article at the publisher’s web-site: Table S1. Statistics associated with the sequencing of mitogenomes using NGS-Illumina technology in 22 hemipteran species. Table S2. Primers designed for amplifying ‘Bait’ sequences. Table S3. Local blast for the ‘Bait’ sequences of each species newly determined in this study. Table S4. The mitochondrial genome nucleotide composition for the major lineage included in this study. Table S5. Saturation test for protein-coding genes, RNA genes and the reduced data sets with OV-sorting. Table S6. Chi-square test of homogeneity of base frequencies across taxa performed by (A) PAUP and (B) TREE-PUZZLE. Table S7. Estimation of synonymous and nonsynonymous substitution rates by yn00 implemented in PAML. Table S8. Partition schemes and best-fitting models selected by PartitionFinder for (A) PCG, (B) PCG_AA, and (C) PCGRNA. Figure S1. Mean sequencing coverage vs. concentration of genomic DNA in the sample pool for 22 identified mitogenomic assemblies. Figure S2. Maximum likelihood tree inferred from the OV-sorted PCGRNA data set (8765 bp) using IQ-TREE under the GTR model. Node numbers show bootstrap support values (> 50). Scale bar represents substitutions/site. Figure S3. Bayesian tree inferred from the OV-sorted PCGRNA data set (7765 bp) using PhyloBayes with the CAT-GTR model. Numbers on the tree indicate the Bayesian posterior probability values (> 0.90). Scale bar represents substitutions/site. Figure S4. Euclidean distance tree for the data set of PCG. Bootstrap percentages are displayed for the significantly long branches and indicate the strength of the compositional signal at particular nodes. The branch lengths represent the compositional heterogeneity in the data set: the longer a branch is, the stronger is the compositional signal. Figure S5. Maximum likelihood tree inferred from the PCG data set without three species from Coleorrhyncha using IQ-TREE under the GTR model. The PhyloBayes analysis based on the same data set provided largely identical tree topology. Node numbers show bootstrap support values (> 50, left) and Bayesian posterior probability values (> 0.90, right). Dashes denote the relationships not being retrieved or BP < 50 or PP < 0.9. Scale bar represents substitutions/site. Figure S6. Compositional distance trees for eight data sets – PCG3RY, PCGDegen, Alicut_PCG, PCGRNA, PCGDegenRNA, Alicut_PCGRNA, OV-sorting 8765bp, and OV-sorting 7765 bp. Red lines highlight three taxa from Coleorrhyncha. The branch length sum illustrates the total amount of compositional heterogeneity in the data set. Figure S7. (A) Maximum likelihood tree inferred from the PCG data set without Coleorrhyncha and Sternorrhyncha using IQ-TREE under the GTR model. Node numbers show bootstrap support values (> 50). Scale bar represents substitutions/site. The Cicadomorpha was non-monophyletic with respect to the nested position of Fulgoroidea. (B) The PhyloBayes tree under the CAT-GTR model based on the same data set. Node numbers show Bayesian posterior probability values (> 0.90). Scale bar represents substitutions/site. In this analysis, the CAT-GTR model suppressed the effect of long-branch attraction between Fulgoroidea and Membracoidea and recovered a monophyletic Cicadomorpha. ACKNOWLEDGEMENTS The detailed information for some sections of this article are tabulated in Supporting Information. We thank Doctor Peng Liu for advice in analysing data and writing this article. We are grateful to Dr Andreas Zwick for his kindly help in the analyses of compositional heterogeneity and for his helpful comments and suggestions on the manuscript. We acknowledge Professor Bojian Zhong for offering the Perl script for OV-sorting analyses. This research is supported by grants from the National Natural Science Foundation of China (No. 31402002), Key Scientific Research Projects of Henan Province (Grant Nos 14B210036 and 16A210029) and Henan Academician Workstation of Pest Green Prevention and Control for Plants in Southern Henan (YZ201601). REFERENCES Bergsten J . 2005. A review of long-branch attraction. Cladistics  21: 163– 193. Google Scholar CrossRef Search ADS   Bernt M , Bleidorn C , Braband A , Dambach J , Donath A , Fritzsch G , Golombek A , Hadrys H , Jühling F , Meusemann K , Middendorf M , Misof B , Perseke M , Podsiadlowski L , von Reumont B , Schierwater B , Schlegel M , Schrödl M , Simon S , Stadler PF , Stöger I , Struck TH . 2013. A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Molecular Phylogenetics and Evolution  69: 352– 364. Google Scholar CrossRef Search ADS PubMed  Bininda-Emonds OR . 2005. transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences. BMC Bioinformatics  6: 156. Google Scholar CrossRef Search ADS PubMed  Boore JL . 1999. Animal mitochondrial genomes. Nucleic Acids Research  27: 1767– 1780. Google Scholar CrossRef Search ADS PubMed  Bourgoin T . 1993. Female genitalia in Hemiptera Fulgoromorpha, morphological and phylogenetic data. Annales de la Societe Entomologique de France (NS)  29: 225– 244. Bourgoin T , Campbell BC . 2002. Inferring a phylogeny for Hemiptera, falling into the ‘autapomorphic trap’. Denisia  4: 67– 82. Bourgoin T , Campbell BC , Ouvrard D , Chan K . 2001. 18S Ribosomal RNA patterns in Hemiptera with emphasis on Fulgoromorpha. In: 2nd European Hemiptera Congress, Slovenia, Fiesa, 20–24 June 2001. Program and book of abstracts. p. 18. Bourgoin T , Chan K , Ouvrard D , Campbell BC . 1999. Character analysis using ribosomal RNA secondary structure and its application to Hemiptera and Fulgoromorpha phylogeny. In: 10th International Auchenorrhyncha Congress, Cardiff, Wales, UK. Cameron SL . 2014a. How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research. Systematic Entomology  39: 400– 411. Google Scholar CrossRef Search ADS   Cameron SL . 2014b. Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology  59: 95– 117. Google Scholar CrossRef Search ADS   Cameron SL , Lambkin CL , Barker SC , Whiting MF . 2007. A mitochondrial genome phylogeny of Diptera: whole genome sequence data accurately resolve relationships over broad timescales with high precision. Systematic Entomology  32: 40– 59. Google Scholar CrossRef Search ADS   Campbell BC , Steffen-Campbell JD , Sorensen JT , Gill RJ . 1995. Paraphyly of Homoptera and Auchenorrhyncha inferred from 18S rRNA nucleotide sequences. Systematic Entomology  20: 175– 194. Google Scholar CrossRef Search ADS   Carver M , Gross GF , Woodward TE . 1991. Hemiptera (Bugs, leafhoppers, cicadas, aphids, scale insects, etc.). In: Naumann ID , Carne PB , Lawrence JF , Nielsen ES , Spradbery JP , eds. The insects of Australia. A textbook for students and research workers, 2nd edn, Vol. 1, Chapter 30 . Carlton: Melbourne University Press, 429– 509. Crampton-Platt A , Timmermans MJ , Gimmel ML , Kutty SN , Cockerill TD , Vun Khen C , Vogler AP . 2015. Soup to tree: the phylogeny of beetles inferred by mitochondrial metagenomics of a Bornean rainforest sample. Molecular Biology and Evolution  32: 2302– 2316. Google Scholar CrossRef Search ADS PubMed  Cryan JR . 2005. Molecular phylogeny of Cicadomorpha (Insecta Hemiptera, Cicadoidea, Cercopoidea and Membracoidea), adding evidence to the controversy. Systematic Entomology  30: 563– 574. Google Scholar CrossRef Search ADS   Cryan JR , Urban JM . 2012. Higher-level phylogeny of the insect order Hemiptera, is Auchenorrhyncha really paraphyletic? Systematic Entomology  37: 7– 21. Google Scholar CrossRef Search ADS   D’Urso V . 2002. The wing-coupling apparatus of Hemiptera Auchenorrhyncha: structure, function, and systematic value. Denisia  176: 401– 410. Dietrich CH , Rakitov RA , Holmes JL , Black WC 4th . 2001. Phylogeny of the major lineages of Membracoidea (Insecta: Hemiptera: Cicadomorpha) based on 28S rDNA sequences. Molecular Phylogenetics and Evolution  18: 293– 305. Google Scholar CrossRef Search ADS PubMed  von Dohlen CD , Moran NA . 1995. Molecular phylogeny of the Homoptera: a paraphyletic taxon. Journal of Molecular Evolution  41: 211– 223. Google Scholar CrossRef Search ADS PubMed  Evans JW . 1963. The phylogeny of the Homoptera. Annual Review of Entomology  8: 77– 94. Google Scholar CrossRef Search ADS   Farris JS , Källersjö M , Kluge AG , Bult C . 1994. Testing significance of incongruence. Cladistics  10: 315– 319. Google Scholar CrossRef Search ADS   Fenn JD , Song H , Cameron SL , Whiting MF . 2008. A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data. Molecular Phylogenetics and Evolution  49: 59– 68. Google Scholar CrossRef Search ADS PubMed  Forero D . 2008. The systematics of the Hemiptera. Revista Colombiana de Entomología  34: 1– 21. Gillett CP , Crampton-Platt A , Timmermans MJ , Jordal BH , Emerson BC , Vogler AP . 2014. Bulk de novo mitogenome assembly from pooled total DNA elucidates the phylogeny of weevils (Coleoptera: Curculionoidea). Molecular Biology and Evolution  31: 2223– 2237. Google Scholar CrossRef Search ADS PubMed  Goodchild AJP . 1966. Evolution of the alimentary canal in the Hemiptera. Biological Reviews of the Cambridge Philosophical Society  41: 97– 140. Google Scholar CrossRef Search ADS   Goremykin VV , Nikiforova SV , Bininda-Emonds OR . 2010. Automated removal of noisy data in phylogenomic analyses. Journal of Molecular Evolution  71: 319– 331. Google Scholar CrossRef Search ADS PubMed  Hamilton KGA . 1981. Morphology and evolution of the rhynchotan head (Insecta, Hemiptera Homoptera). Canadian Entomologist  113: 953– 974. Google Scholar CrossRef Search ADS   Hennig W . 1969. Die Stammesgeschichte der Insekten, Vol. 436 . Frankfurt: Waldemar Kramer. Hennig W . 1981. Insect phylogeny . New York: John Wiley & Sons. Katoh K , Standley DM . 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution  30: 772– 780. Google Scholar CrossRef Search ADS PubMed  Kristensen NP . 1975. The phylogeny of the hexapod “orders”. A critical review of recent accounts. Journal of Zoological Systematics and Evolutionary Research  13: 1– 44. Google Scholar CrossRef Search ADS   Kück P , Meusemann K . 2010. FASconCAT: convenient handling of data matrices. Molecular Phylogenetics and Evolution  56: 1115– 1118. Google Scholar CrossRef Search ADS PubMed  Lanfear R , Calcott B , Ho SY , Guindon S . 2012. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution  29: 1695– 1701. Google Scholar CrossRef Search ADS PubMed  Lartillot N , Brinkmann H , Philippe H . 2007. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evolutionary Biology  7 ( Suppl 1): S4. Google Scholar CrossRef Search ADS PubMed  Lartillot N , Lepage T , Blanquart S . 2009. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics  25: 2286– 2288. Google Scholar CrossRef Search ADS PubMed  Lartillot N , Philippe H . 2004. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Molecular Biology and Evolution  21: 1095– 1109. Google Scholar CrossRef Search ADS PubMed  Li H , Shao R , Song N , Song F , Jiang P , Li Z , Cai W . 2015. Higher-level phylogeny of paraneopteran insects inferred from mitochondrial genome sequences. Scientific Reports  5: 8527. Google Scholar CrossRef Search ADS PubMed  Ma C , Liu C , Yang P , Kang L . 2009. The complete mitochondrial genomes of two band-winged grasshoppers, Gastrimargus marmoratus and Oedaleus asiaticus . BMC Genomics  10: 156. Google Scholar CrossRef Search ADS PubMed  Ma C , Yang P , Jiang F , Chapuis MP , Shali Y , Sword GA , Kang L . 2012. Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. Molecular Ecology  21: 4344– 4358. Google Scholar CrossRef Search ADS PubMed  Miller M , Pfeiffer W , Schwartz T . 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE)  14: 1– 8. Müller HJ . 1962. Neuere Vorstellungen über Verbreitung und Phylogenie der Endosymbiosen der Zikaden 51: 190– 210. Nguyen LT , Schmidt HA , von Haeseler A , Minh BQ . 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution  32: 268– 274. Google Scholar CrossRef Search ADS PubMed  Nie RE , Breeschoten T , Timmermans MJ , Nadein K , Xue HJ , Bai M , Huang Y , Yang XK , Vogler AP . 2017. The phylogeny of Galerucinae (Coleoptera: Chrysomelidae) and the performance of mitochondrial genomes in phylogenetic inference compared to nuclear rRNA genes. Cladistics  33: 1– 18. Google Scholar CrossRef Search ADS   O’Brien LB , Wilson SW . 1985. Planthopper systematics and external morphology. In: Nault LR , Rodriguez JG , eds. The leafhoppers and planthoppers . Wiley New York, 61– 102. Ouvrard D , Campbell BC , Bourgoin T , Chan KL . 2000. 18S rRNA secondary structure and phylogenetic position of Peloridiidae (Insecta, hemiptera). Molecular Phylogenetics and Evolution  16: 403– 417. Google Scholar CrossRef Search ADS PubMed  Pagès M , Chaval Y , Herbreteau V , Waengsothorn S , Cosson JF , Hugot JP , Morand S , Michaux J . 2010. Revisiting the taxonomy of the Rattini tribe: a phylogeny-based delimitation of species boundaries. BMC Evolutionary Biology  10: 184. Google Scholar CrossRef Search ADS PubMed  Phillips MJ , Delsuc F , Penny D . 2004. Genome-scale phylogeny and the detection of systematic biases. Molecular Biology and Evolution  21: 1455– 1458. Google Scholar CrossRef Search ADS PubMed  Popov YA , Shcherbakov DE . 1996. Origin and evolution of the Coleorrhyncha as shown by the fossil record. In Schaefer , Carl W eds. Studies on hemipteran phylogeny . Lanham, Maryland: Entomological Society of America, pp. 9– 30. Rambaut A . 2009. FigTree, Version 1.4.3. Available at: http://tree.bio.ed.ac.uk/software/figtree Regier JC , Mitter C , Zwick A , Bazinet AL , Cummings MP , Kawahara AY , Sohn JC , Zwickl DJ , Cho S , Davis DR , Baixeras J , Brown J , Parr C , Weller S , Lees DC , Mitter KT . 2013. A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS ONE  8: e58568. Google Scholar CrossRef Search ADS PubMed  Regier JC , Shultz JW , Zwick A , Hussey A , Ball B , Wetzer R , Martin JW , Cunningham CW . 2010. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature  463: 1079– 1083. Google Scholar CrossRef Search ADS PubMed  Regier JC , Zwick A . 2011. Sources of signal in 62 protein-coding nuclear genes for higher-level phylogenetics of arthropods. PLoS ONE  6: e23408. Google Scholar CrossRef Search ADS PubMed  Rubinoff D , Holland BS . 2005. Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Systematic Biology  54: 952– 961. Google Scholar CrossRef Search ADS PubMed  Schmidt HA , Strimmer K , Vingron M , von Haeseler A . 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics  18: 502– 504. Google Scholar CrossRef Search ADS PubMed  Shcherbakov DY . 1984. Systematics and phylogeny of Permian Cicadomorpha (Cimicada and Cicadina). Paleontological Journal  18: 87– 97. Shcherbakov DY . 1988. Origin and evolution of Auchenorrhyncha based on fossil evidence: 8. In: Proceedings of the XVIII International Congress of Entomology, Abstracts, Vancouver, BC, Canada. Shcherbakov DY . 1996. Origin and evolution of the Auchenorrhyncha as shown by the fossil. In Schaefer, Carl W eds. Studies on hemipteran phylogeny . Lanham, Maryland: Entomological Society of America, 31– 45. Sheffield NC , Song H , Cameron SL , Whiting MF . 2009. Nonstationary evolution and compositional heterogeneity in beetle mitochondrial phylogenomics. Systematic Biology  58: 381– 394. Google Scholar CrossRef Search ADS PubMed  Simon C , Buckley TR , Frati F , Stewart JB , Beckenbach AT . 2006. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved Polymerase Chain Reaction primers for animal mitochondrial DNA. Annual Review of Ecology and Systematics  37: 547– 579. Simon S , Hadrys H . 2013. A comparative analysis of complete mitochondrial genomes among Hexapoda. Molecular Phylogenetics and Evolution  69: 393– 403. Google Scholar CrossRef Search ADS PubMed  Song N , An SH , Yin XM , Zhao T , Wang XY . 2016a. Insufficient resolving power of mitogenome data in deciphering deep phylogeny of Holometabola. Journal of Systematics and Evolution  54: 545– 559. Google Scholar CrossRef Search ADS   Song F , Li H , Jiang P , Zhou X , Liu J , Sun C , Vogler AP , Cai W . 2016b. Capturing the phylogeny of Holometabola with mitochondrial genome data and Bayesian site-heterogeneous mixture models. Genome Biology and Evolution  8: 1411– 1426. Google Scholar CrossRef Search ADS   Song N , Liang AP , Bu CP . 2012. A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences. PLoS ONE  7: e48778. Google Scholar CrossRef Search ADS PubMed  Sorensen JT , Campbell BC , Gill RJ , Steffen-Campbell JD . 1995. Non-monophyly of Auchenorrhyncha (“Homoptera”), based upon 18S rDNA phylogeny, eco-evolutionary and cladistic implications within pre-Heteropterodea Hemiptera (s.l.) and a proposal for new monophyletic suborders. Pan-Pacific Entomologist  71: 31– 60. Swofford DL . 2002. PAUP, phylogenetic analysis using parsimony and other methods, Version 4 beta 10 . Sunderland: Sinauer Associates. Talavera G , Vila R . 2011. What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny. BMC Evolutionary Biology  11: 315. Google Scholar CrossRef Search ADS PubMed  Tamura K , Stecher G , Peterson D , Filipski A , Kumar S . 2013. MEGA6: Molecular Evolutionary Genetics Analysis, version 6.0. Molecular Biology and Evolution  30: 2725– 2729. Google Scholar CrossRef Search ADS PubMed  Tang M , Tan M , Meng G , Yang S , Su X , Liu S , Song W , Li Y , Wu Q , Zhang A , Zhou X . 2014. Multiplex sequencing of pooled mitochondrial genomes-a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Research  42: e166. Google Scholar CrossRef Search ADS PubMed  Timmermans MJ , Barton C , Haran J , Ahrens D , Culverwell CL , Ollikainen A , Dodsworth S , Foster PG , Bocak L , Vogler AP . 2016. Family-level sampling of mitochondrial genomes in Coleoptera: compositional heterogeneity and phylogenetics. Genome Biology and Evolution  8: 161– 175. Google Scholar CrossRef Search ADS   Timmermans MJ , Dodsworth S , Culverwell CL , Bocak L , Ahrens D , Littlewood DT , Pons J , Vogler AP . 2010. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Research  38: e197. Google Scholar CrossRef Search ADS PubMed  Trifinopoulos J , Nguyen LT , von Haeseler A , Minh BQ . 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research  44: W232– W235. Google Scholar CrossRef Search ADS PubMed  Urban JM , Cryan JR . 2007. Evolution of the planthoppers (Insecta: Hemiptera: Fulgoroidea). Molecular Phylogenetics and Evolution  42: 556– 572. Google Scholar CrossRef Search ADS PubMed  Xia X . 2013. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution  30: 1720– 1728. Google Scholar CrossRef Search ADS PubMed  Xia X , Xie Z , Salemi M , Chen L , Wang Y . 2003. An index of substitution saturation and its application. Molecular Phylogenetics and Evolution  26: 1– 7. Google Scholar CrossRef Search ADS PubMed  Yang Z . 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution  24: 1586– 1591. Google Scholar CrossRef Search ADS PubMed  Yang Z , Nielsen R . 2000. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Molecular Biology and Evolution  17: 32– 43. Google Scholar CrossRef Search ADS PubMed  Yoshizawa K , Saigusa T . 2001. Phylogenetic analysis of paraneopteran orders (Insecta: Neoptera) based on forewing base structure, with comments on monophyly of Auchenorrhyncha (Hemiptera). Systematic Entomology  26: 1– 13. Google Scholar CrossRef Search ADS   Zrzavý J . 1992. Evolution of antennae and historical ecology of the hemipteran insects (Paraneoptera). Acta Entomologica Bohemoslovaca  89: 77– 86. Zwick A , Regier JC , Zwickl DJ . 2012. Resolving discrepancy between nucleotides and amino acids in deep-level arthropod phylogenomics: differentiating serine codons in 21-amino-acid models. PLoS ONE  7: e47450. Google Scholar CrossRef Search ADS PubMed  © 2017 The Linnean Society of London, Zoological Journal of the Linnean Society

Journal

Zoological Journal of the Linnean SocietyOxford University Press

Published: Dec 26, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off